248 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

RepNet: Cutting Latency with Flow
Replication in Data Center Networks

Shuhao Liu, Hong Xu™, Member, IEEE, Libin Liu

, Wei Bai, Kai Chen

, and Zhiping Cai*”, Member, IEEE

Abstract—Data center networks need to provide low latency, especially at the tail, as demanded by many interactive applications.

To improve tail latency, existing approaches require modifications to switch hardware and/or end-host operating systems, making them
difficult to be deployed. We present the design, implementation, and evaluation of RepNet, an application layer transport that can be
deployed today. RepNet exploits the fact that only a few paths among many are congested at any moment in the network, and applies
simple flow replication to mice flows to opportunistically use the less congested path. RepNet has two designs for flow replication:

(1) RepSYN, which only replicates SYN packets and uses the first connection that finishes TCP handshaking for data transmission, and
(2) RepFlow which replicates the entire mice flow. We implement RepNet on node. js, one of the most commonly used platforms for
networked interactive applications. node’s single threaded event-loop and non-blocking I/O make flow replication highly efficient.
Performance evaluation on a real network testbed and in Mininet reveals that RepNet is able to reduce the tail latency of mice flows, as

well as application completion times, by more than 50 percent.

Index Terms—Data center networks, latency, flow replication

1 INTRODUCTION

AS modern Web services become data-driven and inter-
active (e.g., web search and social networks), their
Quality-of-Service tends to have a higher demand in com-
putation capacity and a more strict requirement on response
times. Such applications are usually housed in data centers,
where abundant distributed computing and networking
resources are readily available.

Data center networks, in particular, are tasked to provide
very low latency for many interactive applications [8], [10],
[53]. Low tail latency (e.g., 99%ile or 99.9%ile) is especially
important, since completing a request depends on all (or
most) of the responses from many worker machines [19].
Unfortunately current data center networks are not up to
this task: Many report that the tail latency of short TCP flows
can be more than 10x worse than the average in production
networks, even when the network is only lightly loaded [10],
[52], [53]. The main reason for long tail latency is that ele-
phant and mice flows co-exist in data center networks. While
most flows are mice with less than say 100 KB, most bytes are
in fact from elephant flows much fewer in number [8], [22],
[32]. Thus mice flows are often queued behind bursts of
packets from elephants in switches, resulting in long queue-
ing delay and flow completion time (FCT).

e S. Liu is with University of Toronto, Toronto, Ontario M5S 3G4, Canada
and with the City University of Hong Kong, Kowloon, Hong Kong.
E-mail: shuhao@ece.utoronto.ca.

e H.Xuand L. Liu are with City University of Hong Kong, Kowloon, Hong
Kong. E-mail: henry.xu@cityu.edu.hk, libinliu-c@my.cityu.edu.hk.

o W. Bai and K. Chen are with Hong Kong University of Science and
Technology, Kowloon, Hong Kong. E-mail: {wbaiab, kaichen j@cse.ust.hk.

e Z. Cai is with National University of Defence Technology, Changsha,
Hunan 410073, China. E-mail: zpcai@nudt.edu.cn.

Manuscript received 14 Aug. 2017; revised 19 Dec. 2017; accepted 2 Jan.
2018. Date of publication 15 Jan. 2018; date of current version 3 Feb. 2021.
(Corresponding author: Hong Xu.)

Digital Object Identifier no. 10.1109/TSC.2018.2793250

The problem has attracted much attention recently in
our community. Loosely speaking, existing work reduces
the tail latency by: (1) reducing the queue length, [8], [9],
[36]; (2) prioritizing mice flows, [10], [13], [28], [50]; and
(3) engineering better multi-path schemes, [26], [49], [53].
While effective, they require changes to switches and/or
end-hosts, and face deployment challenges. Thus there is
a growing need for an application layer solution that
provides immediate latency gains without an infrastruc-
ture overhaul.

To this end, we introduce RepNet, a low latency trans-
port at the application layer that can be readily deployed
in current infrastructures. RepNet is based on the simple
idea of flow replication. The key insight is the observation
that multi-path diversity, which is readily available with
high bisection bandwidth topologies such as fat-tree [6], is
an effective means to combat performance degradation
that happens in a random fashion. Flash congestion due to
bursty traffic and imperfect load balancing happen ran-
domly in any part of the network at any time. As a result,
congestion levels on different paths are statistically inde-
pendent. In RepNet, the replicated and original flow are
highly likely to traverse different paths, and the probabil-
ity that both experience long queueing delay is much
smaller. RepNet targets general clusters running mixed
workloads, where short flows typically represent a very
small fraction (< 5 percent) of overall traffic according to
measurements [8], [22]. Additionally, flow replication is
orthogonal to all TCP-friendly proposals in the literature.
Thus it can be used together with schemes such as DCTCP
[8] and pFabric [10], providing even more benefit in reduc-
ing latency.

In this paper we make three contributions in designing,
implementing, and evaluating RepNet based on flow
replication.

1939-1374 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-9359-9571
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0002-2718-8483
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0003-2587-6028
https://orcid.org/0000-0001-5726-833X
https://orcid.org/0000-0001-5726-833X
https://orcid.org/0000-0001-5726-833X
https://orcid.org/0000-0001-5726-833X
https://orcid.org/0000-0001-5726-833X
mailto:
mailto:
mailto:
mailto:
mailto:

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS 249

RTT (ms)
SN W s

=N WU

RTT (ms)

I lm.m“m

RTT (ms)
SIS

100 150

Elapsed Time (s)

0 50 200

Fig. 1. RTT of three paths between two pods of a fat-tree in Mininet.

First, we design RepNet with two schemes of flow repli-
cation, RepFlow and RepSYN, achieving different trade-off
points for different use cases. Both directly use existing TCP
protocols deployed in the network. RepFlow replicates each
short TCP flow by creating another TCP connection to the
receiver, and sending identical packets for both flows. The
application uses the first flow that finishes the transfer. Rep-
Flow fully reaps the benefits of replication at the cost of a
small amount of redundancy, and works in most cases. Yet
an astute reader might be concerned about the use of Rep-
Flow in incast scenarios where many senders transmit at
the same time to a common destination causing throughput
collapse [47]. RepFlow potentially aggravates the incast
problem. To address this, we design RepSYN which only
replicates the SYN packet on the second TCP connection,
and uses the connection that finishes handshaking first for
data transmission.

Second, we implement RepNet with both RepFlow and
RepSYN on node. js [1] as a transport module that can be
directly used by existing applications running in data cen-
ters. node. js (or simply node) is a server-side JavaScript
platform that uses a single-threaded event-loop with a non-
blocking I/O model, which makes it ideal for replicating
TCP flows with minimal performance overhead. Moreover,
node is widely used for developing the back-end of large-
scale interactive applications in production systems at Linke-
dIn [4], Microsoft, Alibaba, etc.'" RepNet is implemented as
an asynchronized socket programming library for node.
For compatibility and ease of deployment, it exposes the
same set of APIs as the standard network library (Net), mask-
ing the required flow replication and redundancy removal
mechanisms behind the scene. Thus, RepNet on node poten-
tially provides immediate latency benefit for a large number
of these applications with minimal code change.

Our third contribution is a comprehensive performance
evaluation of RepNet using queueing analysis (Section 3),
testbed experiments (Sections 5.2-5.3), and Mininet emula-
tion (Section 5.4). We develop a simple M/G/1 queueing
model to analyze mean and tail FCT in data center net-
works. Our model shows that the diversity gain of replica-
tion can be understood as a reduction in the effective traffic
load seen by short flows, which leads to improved queueing

1. https:/ / github.com/nodejs /node/wiki/Projects,-Applications,-
and-Companies-Using-Node

delay and FCT. We perform testbed evaluation on a small
scale leaf-spine network with five Pronto 3295 switches, and
a larger scale Mininet emulation with a 6-pod fat-tree [25],
using an empirical flow size distribution from a production
network [8]. Our evaluation shows that, both RepFlow and
RepSYN reduce the tail latency of mice flows, especially
under high loads, by more than 50 percent. RepSYN is less
effective compared with RepFlow in most cases, but it
remains beneficial in incast scenarios where RepFlow suf-
fers from performance degradation. We further implement
a bucket sort application using RepNet, and observe that
both RepFlow and RepSYN improves the application level
completion times by around 50 percent. The implementa-
tion code [3], and scripts used for performance evaluation,
are available online [2]. We are in the process of making
RepNet available as an NPM (Node Package Manager)
module for the node user community.

2 MOTIVATION AND DESIGN

Let us start by motivating the idea of flow replication to
reduce latency in data center networks, followed by the
high-level design of RepNet including both RepFlow [51]
and RepSYN.

2.1 Motivation

Today’s data center networks are usually constructed with
Clos topologies [11]. In these networks, many paths of equal
distance exist between a pair of hosts. Equal-cost multi-path
routing, or ECMP, is used to perform flow-level load balanc-
ing [29] that routes packets based on the hash value of the
five-tuple in the packet header. Due to the randomness of traf-
fic and ECMP, congestion happens randomly in some paths
of the network, while many others are not congested at all.

We experimentally validate this observation using
Mininet [25] with real traffic traces from data centers.
We construct a 6-pod fat-tree without oversubscription,
with 3 hosts per rack. Traffic traces from a web search clus-
ter [8] are used to generate flows with average link load of
0.3, representing the common utilization figure in produc-
tion networks [43]. To measure RTT as indicator of conges-
tion, we configure 3 hosts in one rack to ping 3 hosts of
another rack in a different pod, respectively. A POX control-
ler is configured to route the 3 ICMP sequences to 3 distinct
paths between the two ToR switches. The interval of ping is
100 ms and the measurement lasts for 200 seconds. The RTT
results are shown in Fig. 1. It highlights two key characteris-
tics of data center traffic: (1) RTT on a single path is low
most of the time, indicating no congestion; (2) the occur-
rences of flash congestion, which results in occasional peaks
in the RTT, are uncorrelated on different paths according to
the cross-covariance analysis shown in Fig. 2; and (3) it is
rare that all paths are congested at the same time.

This form of path diversity motivates the idea of flow rep-
lication [51]. By trading a small amount of traffic redundancy
for a higher degree of connectivity, replication considerably
lowers the probability of transmission experiencing long
latency. Theoretically speaking, if the proportion of con-
gested paths between two end hosts is p, then the probability
of a flow being delayed due to congestion is lowered from p

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node

250

0.012
0.008
0.004
0.000
—-0.004

0.008
0.005
0.002
—0.001
—0.004

0.015
0.010}
0.005} 1
0.000 1

—0.005; 50 100 150 200
Time (s)

Fig. 2. Cross-covariance of each pair of RTT time series measured in
Fig. 1. The absolute value of cross-covariance is always less than
0.015, implying that the time series are uncorrelated.

to p* after replication. Since the hot spots in data center net-
works are typically scarce, we have p < 1, such that p? < p.

This simple intuition is verified in our testbed (more
details about the testbed in Section 5.1). We establish a small
leaf-spine topology with three paths between two racks as
shown in Fig. 3a. We generate long-live flows using iperf
that congest one of the paths as illustrated in Fig. 3a. Two
senders, s1 and s2 in the left rack, are communicating with
rl and r2 in the right rack, respectively. We are able to con-
firm that two TCP flows are routed to the same path and
they are sending at half the link rate (~500 Mbps) each.
Meanwhile, the other two paths are idle.

We then measure RTT between the prober in the left rack
and the server in the right rack, which is shown in Fig. 3b. The
RTT is measured at the application layer during TCP hand-
shaking. Specifically, the prober opens a TCP connection by
sending a SYN packet to the server and starts timing. The tim-
ing stops as soon as the connection is established successfully
(when the ACK to the SYN-ACK is sent by the prober).
We collect 10K RTT samples. As seen from Fig. 3b, the RTT
distribution in our real testbed matches our probability anal-
ysis in the motivation example well. That is, with ECMP, a
redundant TCP connection can lower the probability of
choosing a congested path from p (} in this case) to p* ().

We also collect FCTs of 100 KB mice flows, whose CDFs
are illustrated in Fig. 3¢, using three methods: (1) Send the
flow with one TCP. (2) Send the same flow using two con-
current TCP connections, and record the FCT of the first one
that finishes. (3) Start two TCP connections at the same time
first, then send the payload through the connection that

Core 1

Core 2 Core 3

100,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

finishes handshaking first. Clearly, the CDF of FCT in
Fig. 3c show a similar trend to that of RTT in Fig. 3b,
suggesting that the RTT of SYN packets can reasonably
reflect the congestion of the chosen path. These observations
motivate the design of RepFlow and RepSYN.

2.2 RepNet Design

RepNet comprises of two mechanisms: RepFlow [51]
and RepSYN. We heuristically mandate that flows less than
or equal to 100 KB are considered short flows, and are
replicated to achieve better latency. This threshold value is
chosen in accordance with many existing papers [8], [10],
[28], [39]. Thus in both mechanisms, only mice flows less
than 100 KB are replicated. This can be easily changed for
different networks.

RepFlow uses flow replication to exploit multi-path diver-
sity. It does not modify the transport protocol, and thus
works on top of TCP as well as any other TCP variants, such
as DCTCP [8] and D2TCP [46]. RepFlow realizes flow replica-
tion by simply creating two TCP sockets for transmitting
identical data for the same flow. Though conceptually simple,
RepFlow doubles the number of bytes sent for the flow. Fur-
ther, it may aggravate throughput collapse in incast scenar-
ios, when flows sending concurrently to the same host [47].

We thus design RepSYN to overcome RepFlow’s short-
comings. The idea is simple: we establish two TCP connec-
tions as in RepFlow. However data is only transmitted
using the first established connection, and the other is
ended immediately. Essentially SYN is used to probe the
network and find a better path. The delay experienced by
the SYN reflects the latest congestion condition of the corre-
sponding path. RepSYN only replicates SYN packets and
clearly does not aggravate incast compared to TCP.

Since RepSYN replicates SYN only and incurs ignorable
traffic overheads, it may be more beneficial to establish
even more TCP connections. The the replication factor can
vary based on the path diversity in the data center network,
and it should also take into account the additional system
resource consumption.

2.3 Discussion

One possible concern is that, in the application layer, the
observable latency of establishing a TCP connection does
not completely reflect the RTT experienced by the SYN.
However, it provides sufficient information for the applica-
tion to validate the relative latency along the two paths, and
determine which path is relatively better.

88.9+

66.7-

(%)

33.3

ERNEInE

100,
88.9+
66.7}
9
= — One Single TCP TX
33.3r Faster of the Two
— Single TCP Connection Concurrent TXs
Minimum of Two TX using Connection
T Concurrent Connections " with a Faster RTT
82 26 28 30 32 34 % 7 6 o 10 11 1z 13 14

Iperfsl Iperfs2 Prober Iperfrl Iperfr2 Server

(a) Experiment leaf-spine topology.

Connection Establishing Time (ms)

(b) CDF of the measured RTTs.

Flow Completion Time (ms)

(c) CDF of 100KB mice flow FCTs.

Fig. 3. Experimental evaluation results to verify our motivation for flow replication.
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS

251

25— . x x _ 70— - . x . % 250
mm TCP £ go [HEE TCP F S
— E 60} : £
£ 20r e mpTCP E 5ol [E=0_MPTCP u 55 200
w g c
10 g 30 & S 100
g g 20 o g
Z 5 <10 £ 50
g >
0 © 0 & 0

0.1 0.2 0.3 0.4 0.5
Average Bottleneck Traffic Load

0.1 0.2

Average Bottleneck Traffic Load

03 04 05

0.1
Average Bottleneck Traffic Load

0.2 0.3 0.4 0.5

Fig. 4. FCT comparison between TCP and MPTCP for mice flows (< 100KB) when network oversubscription is 2:1.

One may suggest MPTCP [24] as a better choice of trans-
port, as it is also designed to exploit multiple available paths
in data center networks. is a common transport protocol to
exploit multi-path diversity in networks. As compared to
MPTCP, RepNet differs in several important aspects. First,
RepNet is a pure application-layer solution, while MPTCP
requires kernel upgrades. Second, they have different objec-
tives. MPTCP aims to increase the throughput for large
flows, while RepNet focuses on minimizing the latency
experienced by critical mice flows. Third, they have differ-
ent designs because of different objectives. MPTCP strips a
single copy of data and sends it via multiple paths, while
RepNet sends a redundant replica. Completing a small flow
in MPTCP requires each part to be received successfully,
which is often slower compared to TCP.

It is reported that average and tail FCT in MPTCP is over
20 percent worse than TCP for mice flows less than 100 KB
[7]. We also conduct experiments on our testbed that validate
this observation. The results are shown in Fig. 4, which
compares the FCT of mice flows achieved by TCP and
MPTCP, respectively. In terms of 99.9%ile FCT, MPTCP is
over 40 percent worse than TCP regardless of the traffic load.

RepNet lends itself to many implementation choices.
Regardless of the detail, it is crucial to ensure path diversity
is utilized, i.e., the five-tuples of the original and replicated
flow have to be different (assuming ECMP is used). In our
implementation we use different destination port numbers
for this purpose.

3 QUEUEING ANALYSIS

The ideas of RepFlow and RepSYN presented in Section 2.1
are simple and intuitive. In this section we first present a
queueing analysis of flow completion times in data centers
to theoretically understand the benefits and overhead of
replication. We only present analysis for RepFlow. Analyz-
ing RepSYN requires modeling the conditional expectation
and tail queueing delay which is significantly more chal-
lenging, and we leave it to future work.

3.1 Queueing Model

A rich literature exists on TCP steady-state throughput
models for both long-lived flows [37], [40] and short flows
[27]. There are also efforts in characterizing the completion
times of TCP flows [15], [35]. See [15] and references therein
for a more complete literature review. These models are
developed for wide-area TCP flows, where RTTs and loss
probabilities are assumed to be constants. Essentially, these
are open-loop models. The data center environment, with

extremely low fabric latency, is distinct from the wide-area
Internet. RTTs are largely due to switch queueing delay
caused by TCP packets, the sending rate of which in turn
are controlled by TCP congestion control reacting to RTTs
and packet losses. This closed-loop nature makes the analy-
sis more intriguing [42].

Our objective is to develop a simple FCT model for TCP
flows that accounts for the impact of queueing delay due to
long flows, and demonstrates the potential of RepNet in
data center networks. We do not attempt to build a fine-
grained model that accurately predicts the mean and tail
FCT, which is left as future work. Such a task is potentially
challenging because of not only the reasons above, but also
the complications of timeouts and retransmissions [41], [47],
switch buffer sizes [12], [35], etc. in data centers.

We construct our model based on some simplifying
assumptions. We abstract one path of a data center network
as a M/G/1 first-come-first-serve (FCFS) queue with infinite
buffer. Thus we do not consider timeouts and retransmis-
sions. Flows arrive following a Poisson process and have
size X ~ F(-). Since TCP uses various window sizes to con-
trol the number of in-flight packets, we can think of a flow
as a stream of bursts arriving to the network. We assume
the arrival process of the bursts is also Poisson. One might
argue that the arrivals are not Poisson as a burst is followed
by another burst one RTT later (implying that interarrival
times are not even ii.d). However queueing models with
general interarrival time distributions are difficult to ana-
lyze and fewer results are available [21]. For tractability, we
rely on the commonly accepted M/G/1-FCFS model [10],
[12]. We summarize some key notations in the Table 1.
Throughout this paper we consider (normalized) FCT
defined as the flow’s completion time normalized by its best
possible completion time without contention.

For short flows, they mostly stay in the slow-start phase
for their life time [12], [15], [20], [35]. Their burst sizes depend
on the initial window size k. In slow-start, each flow first
sends out k packets, then 2k, 4k, 8k, etc. Thus, a short flow

TABLE 1
Key Notations

M maximum window size (64 KB, 44 packets)
St threshold for long flows (100 KB, 68 packets)
F(), f(+) flow size CDF and PDF

p€f0,1) overall traffic load

w queueing delay of the M/G/1-FCFS queue
k initial window size in slow-start

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

252 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

N
[y

-
~

e—e TCP
99 RepFlow

mean FCT
-
w
T

9
5
1 1 i i
0.1 02 03 04 05 06 0.7 0.8
load

Fig. 5. Short flow mean FCT. k = 3 packets, flow size distribution from
the web search workload [8].

with X packets will be completed in log ,(X /k+ 1) RTTs, and
its normalized completion time can be expressed as
log o (X /k+1)

FCTx = Y Wi/X+1, (1)
i=1

assuming link capacity is 1 packet per second.

For long flows larger than S;, we assume that they enter
the congestion avoidance phase immediately after it arrives
[37], [40]. They continuously send bursts of a fixed size
equal to the maximum window size M (64 KB by default
in Linux). A large flow’s FCT is then

X/M
FCTY = Wi/X+1,X > S, 2

i=1

3.2 RepFlow: Quantitative Analysis
We now present a quantitative analysis of FCT for RepFlow.

3.2.1 Mean FCT Analysis

Proposition 1. The mean FCT of short TCP flows can be
expressed by

pM /SL log,(z/k+1) f(z)
E[FCT) = dz+1. 3
FCTI =50=7%), w F(Sy) " @
If RepFlow is used, their mean FCT becomes
E[FCT,.,)
2 2 S 4
__(A+ep];/[/ Llogy(z/k+1) f(x) do+ 1.)
21— (1+e)p?) Jo x F(SL)

Proof. See Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TSC.2018.2793250 for a detailed derivation. O

Apparently, the mean FCT for short TCP flows calculated
by (3) depends on the load of the network and the flow
size distribution. We use k = 3 packets as the TCP initial
window size, which is consistent with our testbed setting
in Section 5.1. Using the same flow size distribution as in
Section 2.1 from a web search data center [8], Fig. 5 plots
the FCT with varying load.

For FCT of Repflows (4), given small e < 0.1, (1 + 6)2,02 is
much smaller than p. As p increases the difference is
smaller. However the factor p/(1 — p) that largely deter-
mines the queueing delay E[W] and FCT is very sensitive to
p in high loads, and a small decrease of load leads to signi-
ficant decrease in FCT. In the same Fig. 5, we plot FCT for
RepFlow with the same web search workload [8], where

4

T T
e—e TCP
9—® RepFlow

w

mean FCT
N
T

1 ! H i i i
0.1 0.2 0.3 04 05 06 0.7 0.8
load

Fig. 6. Large flow mean FCT. k = 3 packets, flow size distribution from
the web search workload [8].

95 percent of bytes are from long flows, ie., e=0.05.
Observe that RepFlow is able to reduce mean FCT by a
substantial margin compared to TCP in all loads.

Our analysis reveals that intuitively, the benefit of Rep-
Flow is due to a significant decrease of effective load experi-
enced by the short flows. Such a load reduction can be
understood as a form of multi-path diversity discussed
earlier as a result of multi-path network topologies and
randomized load balancing.

At this point one may be interested in understanding the
drawback of RepFlow, especially the effect of increased
load on long flows. We now perform a similar FCT analysis
for long flows. For a large flow with X > S; packets, we
thus have

prert =M X p

_2(1—,0)7M-X+ :2(1_p)+1. (5)

The mean FCT for long flows only depends on the traffic
load. With RepFlow, load increases to (1 +¢€)p, and FCT
becomes

14+¢€)p
prort)= (LH9P 1, 6
Flal == an * ©
For long flows, load only increases by ¢, whereas small
flows see a load decrease of 1 — (14 ¢€)’p. long flows are
only mildly affected by the overhead of replication. Fig. 6
plots the mean FCT comparison for long flows.

3.2.2 99%ile FCT Analysis

To determine the latency performance at the extreme cases,
such as the 99%ile FCT [8], [9], [28], [53], we need the proba-
bility distribution of the queueing delay, not just its average.
This is more difficult as no closed form result exists for a
general M/G/1 queueing delay distribution. Instead, we
approximate its tail using the effective bandwidth model
[34], which leads to the following proposition:

Proposition 2. With and without RepFlow being applied, the
tail FCT for long flows can be expressed as follows, respectively:

FCT: = E[FCT"] + (2In10 - YE[W]-P, (D)

TL L L
FCTV%}] - E[FCTV‘(fp] + (2 111 10 - I)E[Wr(’p]) P7
_ (71 f(=)
WhereP—/SL ml—F(S’L)dz’ (8)
(14 €)pM

EWwWLk | =~
[r(,p] 2(1 _ (1 + E),O)

Proof. See Appendix B, available in the online supplemen-
tal material for a detailed derivation (see Fig. 7). O

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSC.2018.2793250
http://doi.ieeecomputersociety.org/10.1109/TSC.2018.2793250

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS 253

120 e TcP e
& RepFlow [~ i iei /o

o
o
o

®
o

o
o

o
o

20t AT T

99-th percentile FCT

1 i i
0.1 02 03 04 05 0.6 0.7 0.8
load

Fig. 7. Short flow tail FCT. k = 3 packets, flow size distribution from
the web search workload [8].

Fig. 8 shows the numerical results. Long flows enjoy
better tail FCT compared to short flows, since their trans-
mission lasts for a long time and is not sensitive to long-
tailed queueing delay. Again observe that RepFlow does
not penalize long flows.

3.3 Summary

We summarize our analytical findings. Short flow mean and
tail FCT depend critically on queueing delay, and the factor
12, assuming a M/G/1-FCFS queue.

Using replication, they have much less probability of
entering a busy queue, and the effective load they expe-
rience is greatly reduced. This confirms the intuition
that RepNet provides path diversity gains in data center
networks.

4 IMPLEMENTATION

We now describe our implementation of RepNet with node.
The source code is available online [3].

4.1 Why Node?
On a high level, node is a highly scalable platform for real-
time server-side networked applications. It combines sin-
gle-threaded, non-blocking socket with the event-driven
philosophy of JavaScript. It runs on Google V8 engine with
core libraries optimized for performance and scalability [1].

The first reason for choosing node is efficiency. Replica-
tion introduces the overhead of launching additional TCP
connections. To provide maximal latency improvements,
we need to minimize this overhead. This rules out a multi-
threaded implementation using for example Tornado or
Thrift [44]. For one thing, replicating mice flows nearly
doubles the number of concurrent connections a server
needs to handle. For the other, the necessary status synchro-
nization between the original connection and its replica
demands communication or shared memory across threads.
For applications with I/O from a large number of concur-
rent connections, a multi-threaded RepFlow will be bur-
dened by frequent thread switching and synchronization
[45] with poor performance and scalability. In fact, we tried
to implement RepNet on Thrift based on python, and
found that the performance is unacceptable.

node satisfies our requirement for high efficiency. Specif-
ically, its non-blocking I/O model in a single thread greatly
alleviates the CPU overhead. Asynchronous sockets in
node also avoid the expensive synchronization between
the two connections of RepFlow. For example, it is complex
to choose a quicker completion between two socket .read
operations using blocking sockets: three threads and their
status sharing will be needed. Instead, node relies on

e—e TCP S
& RepFIOW [« ooeioeeeid

L0 N

NN
o]
T T T T

99-th percentile FCT

1. 1 1 i i i
0.1 0.2 03 04 05 06 0.7 0.8
load

Fig. 8. Large flow tail FCT. k£ = 3 packets, flow size distribution from
the web search workload [8].

callback of the ‘data’ event to handle multiple connec-
tions in one thread, which greatly reduces complexity. The
thread stack memory footprint (typically 2 MB per thread)
is also reduced.

The second reason we choose node is that it is widely
deployed in production systems for companies such as
LinkedIn, Microsoft, etc. [4]. Besides deployment in front-
end web servers to handle user queries, a large number of
companies and open source projects rely on node at the
back-end for compatibility.” node integrates smoothly with
NoSQL data stores, e.g., MongoDB,3 and caches, e.g., memc-
ached,* and enables a full JavaScript stack for the ease of
application development and maintenance. For these rea-
sons, node is commonly used in data centers to fetch data
across server machines. Thus implementing RepNet on it is
likely to benefit a large audience and generate immediate
impact to the industry.

4.2 Overview

Before we evaluate RepNet on a real-world infrastructure
to verify the promising theoretical analysis, we first present
its implementation. RepNet is implemented based upon the
Net® module, node’s standard library for non-blocking
socket programming. Similar to Net, RepNet exposes some
socket functions, and wraps useful asynchronous network
methods to create even-driven servers and clients, with
additional low latency support by flow replication.

We implement RepNet with the following objectives:

Transparency. RepNet should provide the same set of
APIs as Net, making it transparent to applications. That is,
to enable RepFlow, one only needs to include require
(‘repnet’) instead of require (‘net '), without chang-
ing anything else in the existing code. By default, RepNet
uses RepFlow for small flows (with a threshold size
<100 KB). Users can customize the parameters to switch to
RepSYN or tune the threshold of mice flows.

Though RepNet offers complete transparency, develop-
ers can still enjoy the flexibility to use it. In most cases,
developers are fully aware of the particular applications
that generate small flows that are latency-critical. They can
explicitly apply RepNet on these flows, while leaving other
TCP connections unchanged.

In cases where developers are not aware, there is an
option to blindly automate this selection, with some predict-
able overheads. In RepSYN, the strategy can be applied to
all flows. In RepFlow, each flow can be initially replicated

2. https:/ / github.com /nodejs/node/wiki/Projects,-Applications,-
and-Companies-Using-Node

3. www.mongolab.com/node-js-platform

4. https:/ /nodejsmodules.org/pkg/memcached

5. http:/ /nodejs.org/api/net.html.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node
https://github.com/nodejs/node/wiki/Projects,-Applications,-and-Companies-Using-Node
www.mongolab.com/node-js-platform
https://nodejsmodules.org/pkg/memcached
http://nodejs.org/api/net.html

254 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

TABLE 2
All States in the FSM
State Description On Waiting List Performing I/O on
ONE_CONN Only one Net . Socket is open. The other one is pending. Yes The only connection.
DUP_CONN Both member Net . Socket objects are open. No Both connections.
CHOSEN One of Net . Socket objects is no longer valid. Depend on State The chosen connection.
ENDED The RepNet . Socket is ended. No N/A
TABLE 3
Trigger of the State Transitions
Transition Trigger Additional Consequence
1 The slower connection is detected at the server. The corresponding flow is removed from the waiting list.
The replicated connection is binded with the matching one.
2 One connection raises an exception, or emits an The abnormal connection is abandoned by calling the
‘error’ event. destroy () function and resetting the other end.
3 The corresponding flow in the waiting list is timed out. The item is deleted from the waiting list.
4 The archived data for writes exceeds the threshold. The corresponding flow will NOT be removed from
the waiting list until the second SYN arrives for correctness.
56,7 Both connections are destroyed or ended.

after the connection is established. Then, as soon as enough
data (e.g., 100KB) has been sent out, RepNet can close the
slower connection and stay with a single TCP connection.

Compatibility. A RepNet server should be able to handle
regular TCP connections at the same time. This is required
as elephant flows are not replicated.

RepNet consists of two classes: RepNet.Socket and
RepNet . Server. RepNet . Socket implements a replica-
tion capable asynchronous socket at both ends of a connec-
tion. It maintains a single socket abstraction for applications
while performing I/O over two TCP sockets. RepNet.
Server provides functions for listening for and managing
both replicated and regular TCP connections. Note that
RepNet.Server does not have any application logic.
Instead, it creates a connection listener at the server side,
which responds to SYN packets by establishing a connec-
tion and emitting a connected RepNet . Socket object in a
corresponding callback for applications to use.

We now explain the high-level design and working of
RepNet by examining the lifetime of a RepFlow transmis-
sion. The case of RepSYN is similar. First, the server runs a
RepNet . Server that listens on two distinct ports. This is
to make sure that the original and replicated flows have dif-
ferent five-tuples and traverse different paths with ECMP.
When the client starts a RepFlow connection, a RepNet .
Socket object is instantiated. Two Net.Socket objects,
being two members of the RepNet.Socket object, will

Initiated by
the server

Initiated by
the client

Fig. 9. The FSM of RepNet . Socket.

send SYN packets to the two ports on the receiver, respec-
tively. They share the same source port number though, so
the server can correctly recognize them among potentially
many concurrent connections it has.

Now our server may not get the two SYN packets at the
same time. To minimize delay, upon the arrival of the first
SYN, the server responds immediately by emitting a new
RepNet . Socket, using one member Net . Socket to pro-
cess handshaking while creating another null Net . Socket.
The first TCP connection is then established and ready for
applications to use right away.

The server now waits for the other connection. Its
RepNet . Server maintains a waiting list of connections—
represented by <ip_addr:port> tuples—whose replicas
has yet to arrive. When the second SYN arrives, the server
matches it against the waiting list, removes the connection
from the list, and has the corresponding RepNet . Socket
instantiate the other member Net.Socket. This second
TCP connection will then proceed. At this point, both sides
can send data using RepFlow, as two complete RepNet .
Socket objects. Note that the server also handles standard
TCP connection. In this case a second SYN will never arrive
and can be detected by timeout.

Our implementation is based on node 0.11.13. We
introduce more details of our implementation in the
following.

4.3 Class: RepNet.Socket

The key difference between RepNet.Socket and Net.
Socket is the I/O implementation. Since a RepNet.
Socket has two TCP sockets, a Finite State Machine (FSM)
model is used to handle the asynchronous I/O across them.
For brevity, all four states of the FSM are listed in Table 2.
Fig. 9 shows the possible state transitions with more expla-
nation in Table 3.

The client, who initiates the connection, always starts in
DUP_CONN, and socket.write() in RepNet is done by
calling socket.write() of both member Net.Socket
objects to send data out. The server always starts in

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS 255

Core 1 Core 2 Core 3

Fig. 10. The leaf-spine topology of the testbed.

ONE_CONN waiting for the other SYN to arrive, and when it
does enters DUP_CONN. In both states read operations are
handled in the callback of a ‘data’ event. A counter is
added for each connection to coordinate the detection of
new data. As soon as new chunks of buffer are received,
RepNet . Socket emitsits “data’ event to the application.
For the server, if there are writes in ONE_CONN, they are
performed on the active connection immediately and
archived for the other connection with the associated data.
If the archived data exceeds a threshold, the server enters
CHOSEN and disregards the other connection. The server
may also enter CHOSEN after timeout on waiting for the
other connection, which corresponds to the standard TCP.

4.4 Class: RepNet.Server

RepNet . Server has two Net . Server objects which lis-
ten on two distinct ports. The key component we add is the
waiting list which we explain now.

The waiting list is a frequently updated queue. Each flow
in the waiting list has three fields: TTL, flowID (the client’s
<ip_addr:port> tuple), and handle (a pointer to the
corresponding RepNet . Socket instance).

There are three ways to update the list:

Push. If a new SYN arrives and finds no match in the list,
a new RepNet.Socket object is emitted and its corre-
sponding flow will be pushed to the list.

Delete. If a new SYN arrives and it matches with an exist-
ing flow, the corresponding RepNet . Socket object is then
completed and this flow is removed from the list.

Timeout. If the flow stays on the list for too long to be
matched, it is timed out and removed. This timeout can
be adjusted by setting the WL_TIMEOUT option. The default
is equal to RTO of the network. A higher value of WL_
TIMEOUT may decrease the probability of matching failures,
at the cost of increasing computation and memory.

Note that to achieve transparency by exposing the same
APIs as Net . Server, the constructor of RepNet . Server
accepts only one port number parameter. It simply advan-
ces the number by one for the second port. An error event
will be emitted if either of the port is already in use.

4.5 RepSYN

As explained in Section 2.2, we propose RepSYN to alleviate
RepFlow’s drawbacks in incast scenarios. A RepSYN client
can work compatibly with a RepNet . Server. Specifically,
once the second connection is established and the server-
side socket enters DUP_CONN, it would be reset immediately

by the client to trigger the transition to CHOSEN in Table 3.
RepSYN can be activated by setting the Flag_RepSYN flag
of the RepNet . Socket object.

5 EVALUATION

We evaluate RepNet using both testbed experiments and
Mininet emulation. Our evaluation focuses on four key
questions:

e How does RepNet perform in practice? With a real-
world flow size distribution [8], we show that for
mice flows, RepFlow and RepSYN provide up to
~69 and ~57 percent 99.9%ile latency reduction,
respectively, over linux stack TCP. RepFlow and
RepSYN also reduce the 99%ile and median latency.
The small replication overhead does not impact the
FCT of elephant flows.

e How does RepNet perform under incast scenarios? We
show that in our testbed with 11-to-1 incast (22-to-1
for RepFlow), RepFlow still provides lower 99.9%ile
latency, but suffer from higher FCT at the 99%ile due
to the aggravation of incast. RepSYN, on the other
hand, is indeed effective in reducing both 99%ile
and 99.9%ile FCT in incast scenarios.

e How does applications benefit from RepNet? We imple-
ment a distributed bucket sort application with parti-
tion-aggregate workflows using RepNet. The testbed
results show that its 99.9%ile job completion time is
reduced by ~45 percent, and 99%ile job completion
time by ~50 percent with both RepFlow and RepSYN.

e Does RepNet work well in a large scale? Using Mininet
emulation with a 6-pod fat-tree and the web search
workload [8], we show that RepNet still provides
lower median and tail FCT for mice flows when the
network load is larger than 0.4.

5.1 Testbed Setup
Our testbed uses Pronto 3295 48-port Gigabit Ethernet
switches with 4MB shared buffer. The switch OS is PicOS
2.04 with ECMP enabled. Our testbed server has an Intel
E5-1410 2.8 GHz CPU (8-thread quad-core), 8 GB memory,
and a Broadcom BCM5719 NetXtreme Gigabit Ethernet NIC.

The servers run Debian 6.0 64-bit Linux, kernel version
2.6.38.3. We change RTO,,, to 10 ms in order to remedy the
impact of incast and packet retransmission [47]. We found
that setting it to a value lower than 10 ms leads to system
instability in our testbed. The initial window size is 3, i.e.,
about 4.5 KB payload. The initial RTO is 3 seconds by
default in the kernel, which influences our experiments in
cases where TCP connections fail to establish at the first
time. We tried to set it to a smaller value, but found that
kernel panics occur frequently because of fatal errors experi-
enced by the TCP keep-alive timer.

Topology. The testbed uses a leaf-spine topology depicted
in Fig. 10 which is widely used in production [7], [10], [26].
There are 12 servers organized in 2 racks, and 3 spine
switches which provide three equal-cost paths between two
hosts under different ToRs. The ping RTT is ~178 s across
racks. The topology is oversubscribed at 2:1 when all hosts
are used. We also conduct experiments without oversub-
scription, by shutting down half of the servers in each rack.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

256 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021
18— T . 60— T % 140 — T
l6 |EEE TCP £ ., ||mm Tcp € 150! [mmm TCP
214 RepFlow : RepFlow » 'C) 100 RepFlow
= 12H 23 RepSYN | e E 40H 3 RepSYN | i L L Hzal RepSYN |)
= = 9
5 10l— : g : = 80} :
g 1 £ 30 | E I
E . o;a_ gzo o , o 60+] L
E £ L e S a0l
s 4 4:9 Qlo B’ = :
2 RN : LRR 5 o R
ol 1 B i il > 9 Al HEl G i 2 0 | A s it ~ |~ Ml 7
0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 04 05

Average Bottleneck Traffic Load

Average Bottleneck Traffic Load

Average Bottleneck Traffic Load

Fig. 11. FCT/NFCT comparison when network oversubscription is 1:1. The shadowed area indicates the estimated baseline software overhead.

Although our testbed is small in scale, it gives us a
glimpse of how RepFlow and RepSYN are beneficial in pro-
duction environments. The benefits of RepFlow and
RepSYN are more salient in actual datacenters. The reason
is that large-scale datacenters provide more paths, and
more diversity gains between a pair of nodes. Also the prob-
ability of two TCP flows being routed to the same path is
lower, meaning that more mice flows can actually benefit
from replication. In the current configuration, this probabil-
ity is §, when the redundant TCP connection fails to find an
alternate path. In this case, RepFlow and RepSYN are no
longer useful.

5.2 Performance Under Empirical Traffic Workload
5.2.1 Workload Generation

We use the flow size distribution from a web search work-
load [8] to drive our experiments. Most flows (~60 percent)
in this workload are mice flows smaller than 100 KB, though
over 95 percent of the bytes are from 30 percent of flows
larger than 1 MB.

Flows are generated between random pairs of servers in
different racks following a Poisson process, with bottleneck
traffic load varying from 0.1 to 0.5 for both the oversub-
scribed and non-oversubscribed settings. We notice that
when the bottleneck load is higher than 0.5, packet drops
and retransmissions become too frequent to conduct mean-
ingful experiments. At each run, we collect and analyze
flow size and completion time information from at least
200,000 flows for each scheme, and each experiment lasts
for at least 6 machine hours.

5.2.2 Performance Metrics

flow completion time is commonly used as the performance
metric in the literature [7], [10], [31]. Yet here we adopt a
slightly different metric called Normalized Flow Completion
Time (NFCT) as our main performance metric for RepFlow
and RepSYN. NFCT is defined as the measured FCT minus
the estimated baseline software overhead, which is the soft-
ware networking overhead to use a single TCP connection.
Software networking overhead includes for example code
interpretation, transition between user space and kernel
space, socket creation, binding, context switching, etc., and
varies depending on the OS and the networking stack. It is
also possible to almost completely avoid this overhead
using a low-level, compiled language and various kernel
bypassing techniques [33], [38], [54]. By removing its
impact, NFCT is in fact a better metric to reflect the actual in-
network latency.

The estimated baseline software overhead on our testbed
with our node implementation is 6.82 ms. It is measured by
averaging the FCTs of 100K flows of 1KB sent to localhost,
using our implementation without network latency. More
discussion on overhead is deferred to Section 5.2.6. Note
that although RepFlow and RepSYN incur more software
networking overhead than TCP (because of the use of an
extra TCP socket), this slight difference is already included
in their NFCT statistics by definition.

We compare RepFlow and RepSYN against standard
Linux TCP Cubic. Since both RepFlow and RepSYN are
completely working in the application layer, whose func-
tionality is orthogonal to lower layer schemes, we do not
compare against these schemes.

5.2.3 NFCT of Mice Flows

First, we study the NFCT of mice flows. We compare three
statistics, median, 99%ile and 99.9%ile NFCT, to show Rep-
Flow and RepSYN'’s impact on both the median and tail
latency.

Fig. 11 shows the results without oversubscription in the
network. Neither RepFlow nor RepSYN makes much differ-
ence when the load is low (< 0.2). As the load increases,
RepFlow and RepSYN yield greater benefits in both median
and tail latency. When the load is 0.5, RepFlow provides
15.3, 33.0 and even 69.9 percent reduction in median,
99%ile, and 99.9%ile NFCT, respectively. RepSYN also
achieves 10.0, 15.8 and 57.8 percent reduction in median,
99%ile, and 99.9%ile NFCT, compared with TCP.

An interesting observation is that when the load is high,
RepFlow achieves much lower tail latency, while RepSYN
becomes less beneficial. This is because RepFlow with dupli-
cated transmissions has a lower probability of experiencing
packet losses which constitutes a great deal in tail latency.

When the network is oversubscribed at 2:1, the results
are similar in general as shown in Fig. 12. RepFlow and
RepSYN are in fact more beneficial in this case, because
bursty traffic is more likely to appear at the second or third
hop now, which can be avoided by choosing another avail-
able path. Therefore, in a production data center network
where the topology is typically oversubscribed with many
paths available, RepFlow and RepSYN are able to greatly
reduce the tail latency and provide better performance.

We also study the impact of flow size on performance
improvement. We divide all mice flows into 6 groups based
on the minimum number of round trips needed to transmit
by TCP. Fig. 13 illustrates the 99%ile NFCT of these groups,
when the load is 0.4. We can see that RepFlow and RepSYN
are equally beneficial for mice flows of different sizes. We

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS 257
16— . . . 60— % 90—
14 mmE TCP Ego|mmTCP | om.] S BOF/MEE TCP | e

g 12 RepFlow| ... Hiwa = RepFlow] 5 70t RepFlow
: 10 m RepSYN E 40 ks E RepSYN / ? 60 [E RepSYN
) : 5 f 2 z ; i) T 50 :
w 8 0 e S 30+ - c
c .] 5 : 940+
© 6 . =1 o ; i ;
k= | g 5 200 0 30
2 4 A g : ‘ o z ‘
= & < 10 : P 5 ’ < 20 : : ’
X T TR sl iEd IE
¢ ‘. g, -2 g (o)) g & A : - S - |
o ol ‘ i o ‘ HEs M il e 20 ﬁﬁ H | 7 7
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

Average Bottleneck Traffic Load

Average Bottleneck Traffic Load

Average Bottleneck Traffic Load

Fig. 12. FCT/NFCT comparison when network oversubscription is 2:1. The shadowed area indicates the estimated baseline software overhead.

observe the same result for different loads and oversub-
scription settings and omit the figures here.

5.2.4 Performance Under Incast

We carefully study RepFlow and RepSYN’s performance in
incast scenrios here. In this experiment, whenever we gener-
ate a mice flow, we create another 10 flows of the same size
with the same destination in parallel, resulting in a 11-to-1
incast pattern. For RepFlow it becomes 22-to-1 incast. Note
the flow size distribution still follows the web search work-
load with both mice and elephants.

The performance is illustrated in Fig. 14. Note that the
z-axis is in log scale, which shows more details about
the tail latency. Though RepFlow is still able to cut the
99.9%ile NFCT by 20.5 percent, it is no longer beneficial in
the 99%ile, which is ~ 400 us longer than TCP. Most flows
experience longer delay using RepFlow. The benefit in the
99.9%ile is because hash collision with elephants still con-
tributes to the worst-case FCTs in our testbed. However, the
benefit may be smaller if the concurrency of small flows
was extremely high in incast. In those cases RepFlow could
become a real burden.

Fig. 14 shows that RepSYN, on the other hand, has 8.7 and
6.0 percent NFCT reductions in the 99%ile and 99.9%ile,
respectively. The slowest half of all flows are accelerated.
Therefore, our suggestion for applications which incor-
porate serious many-to-one traffic patterns is to use RepSYN
instead. Without aggravating the last hop congestion,
RepSYN is still beneficial for reducing in-network latency.

5.2.5 Impacton Large Flows

We now assess the impact of RepFlow on elephant flows
due to the additional traffic it introduces. We plot through-
put of elephants in both low and high loads in Figs. 15a
and 15b, respectively. It is clear that throughput is not

w
o

T T T

=4 TCP
@=@ RepFlow
st RepSYN

N
[&)]

N
o

-
(%))

-
(=]

99th percentile NFCT (ms)

T 2 3 4 5 6
Minimum Number of RTTs Needed

Fig. 13. 99%ile NFCT comparison of flows with different sizes.

affected by RepFlow or RepSYN. The reason is simple: for
data centers mice flows only account for a fraction of the
total traffic [8], [22], and replicating them thus cause little
impact on elephants.

5.2.6 Overhead of Replication

We look at the additional software networking overhead
of RepFlow and RepSYN due to the extra TCP connec-
tions and state management as mentioned in Section 4.
We use the same method of obtaining the baseline software
overhead—measuring the average FCT of 100K flows of
1 KB sent to localhost—for RepFlow and RepSYN. These
100 K flows are sent sequentially, making them independent
of each other. The result is shown in Fig. 16 with error bars
representing one standard deviation. Observe that on aver-
age, RepFlow incurs an extra 0.49 ms of software overhead,
while RepSYN’s overhead is 0.32 ms in our current imple-
mentation. Note that the software networking overhead
differs with different system settings.

Another source of overhead is the extra data sent into the
network. This is the reason why we see a relatively longer
median NFCT in RepFlow and RepSYN when the traffic
load is low (e.g., 0.1). This overhead does not directly
impact application performance because it is the tail latency,
rather than the average, of mice flows that critically affects
the performance of applications with a partition-aggregation
workflow in datacenters [19].

5.2.7 Discussion

Finally, we comment that the testbed scale is small with
limited multipath diversity. Both the kernel configuration
and our implementation can be further optimized. Thus the
results obtained shall be viewed as a conservative estimate
of RepFlow and RepSYN's practical benefits in a production
scale network with a large number of paths.

40

o=0 TCP
= RepSYN
w= RepFlow

532 89.9 978 995 99.9
-th percentile

Fig. 14. NFCT of mice flows in incast. Average bottleneck load is 0.2.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

258 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

N TCP
et RepFlow |:....
o—a RepSYN

100]

Throughput (Mbps)
N
=)
o

510 20 50 99

102 05 1 2
-th percentile

(a) Low bottleneck traffic load of 0.2.

Fig. 15. Throughput distribution of large flows.

5.3 Application-Level Performance

After the flow-level performance evaluation, one question
remains unclear: how much performance enhancement can we
get by using RepNet for applications? We answer this question
by implementing a distributed bucket sort application in
node on our testbed, and evaluating the job completion
times with different transport mechanisms.

5.3.1 A Sorting Application

We choose to implement bucket sort [17], a classical distrib-
uted sorting algorithm, as an example application with a
partition-aggregation workflow. In bucket sort, there exists
a master which coordinates the sorting process and several
slave nodes which complete the sub-processes individually.
Whenever the master has a large array of numbers (usually
stored in a large text file) to sort, it divides the range of these
values into a given number of non-overlapping groups, i.e.,
buckets. The master then scans the array, disseminates the
elements to their corresponding buckets using TCP connec-
tions. Typically, each slave node holds a bucket, taking care
of unsorted numbers in this bucket. In this case, the slaves
are doing counting sort as the unsorted data arrive sequen-
tially. A slave returns the sorted bucket to the master, who
simply concatenates the results from all slaves together as a
sorted array.

In our experiment, the unsorted array comprises one mil-
lion integers, which are randomly distributed between 0
and 65,535. We have all 12 hosts in our testbed working at
the same time, with 1 master and 11 slaves for an individual
sorting job.

All network flows are originally generated through the
socket API provided by the Net module. In order to test
RepFlow and RepSYN provided by our RepNet module, all
we need to do is to change the module require statements
at the very beginning of the node script.

Mice Flows. The unsorted data distribution process from
the master involves a large number of mice flows sending

[g
6,82 =

Software Overhead (ms)
O AN W dh OO N

TCP RepFlow RepSYN

Fig. 16. Estimated software networking overhead comparison.

1000,

N TCP
S00H s RepFlow [
o—e RepSYN

200F
100}
50f

Throughput (Mbps)

20E%;
01

%3
;

1

0.

.

20.5‘12

5 10 20 50 99
-th percentile
(b) High bottleneck traffic load of 0.4.

out to multiple destination slaves, because the unsorted
numbers are scanned sequentially by the master. A buffer-
ing mechanism is used to reduce the flow fragmentation—a
chunk of unsorted numbers will not be sent out until a set
of 20 numbers to the same destination slave is buffered.
With buffering, these flows are still small in size (<1 KB).

Elephant Flows. When a slave completes its share of work,
it returns the sorted results in the form of a large file to the
master. We take these flows as elephants which will not be
replicated by RepNet.

Performance Metrics. In our experiment, each server is
working as both master and slave at the same time. As a
master node, it continuously generates new random
unsorted data sets after the completion of the last job it coor-
dinates. At the same time, it is working as a slave node for
each one of the other 11 servers. In this case, the network
traffic is a mixture of mice and elephant flows, whose com-
munication pattern is similar to that of a production cluster.
Note that the starting time of each sorting master is delayed
for several milliseconds randomly, in order to reduce flow
concurrency at the beginning of our experiment.

We examine the CDF of the job completion times with
different transport mechanisms, i.e., stack TCP, RepFlow
and RepSYN. The timing of the job starts when the sorting
master begins, i.e., starts reading the unsorted array from
the input file, and stops as soon as the sorted array are suc-
cessfully written to a text file.

5.3.2 Job Completion Time Analysis

We run the bucket sort application over 1,000 times on each
machine with each transport mechanism, respectively. As a
result, over 12,000 job completion times of similar sorting
tasks are collected. The CDFs are plotted in Fig. 17. Note that
the y-axis is in log scale to emphasize the tail distribution.
The job completion time (JCT) of bucket sort is deter-
mined by the last slave node that completes its work. The
long FCT of even just a single flow greatly degrade the

1000t == TCP
== RepFlow
e=—s RepSYN
500+

200

Sorting Time (ms)

100 N E R N i
36 68 84 92 96 98 99 99.5 99.899.9
-th percentile

Fig. 17. Job completion time CDF of the bucket sort application.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS 259
9— T - r T T r T 250— T r T T T r T 350— T r T T T r T
8| Emm TCP : : o — B TCP 55 300} E=E TCP
7 RepFlow |- $ 200¢ RepFlow | i '-; 250 RepFlow 1

Ge o [~ RepSYN | =

w < 150 - e - < 500 4 |
c > S i : o :
S 4 S : 5 150
i g 1o0r : o

= 5 - y : g 8-C_; 100 HE
& 50t : : A :

1 o I H! Ei i § S 50

0 A d ' d Al ¥ ‘ il |

8

Average Traffic Load

Fig. 18. FCT comparison in Mininet with a fat-tree.

application-level performance. Therefore, the impact of the
“long tail” of FCTs is magnified. We observe that most jobs
(~85 percent) can finish between 95 to 100 ms, since the
paths are idle most of the time. However, due to flash con-
gestions in the network, some jobs experience extremely
long delay. With stack TCP, the 99.9%ile job completion
time can be as long as 1.2s, which is over 11x more than a
job without congestion. RepNet improves JCT here: both
RepFlow and RepSYN reduce the 99.9%ile JCT by ~45 per-
cent, to 700-800 ms, and the 99%ile JCT by ~50 percent.

Comparing RepFlow and RepSYN, their distributions
are similar with small differences. RepFlow turns out to be
marginally better in most (99.7 percent) jobs, but has a lon-
ger tail (nearly 100 ms) at the 99.9%ile. The reason is that
gathering sorting results may result in an incast pattern,
with multiple-to-one elephant flow transmission. In most
cases, these flows are not concurrent—slaves typically do
not finish at the same time, and RepFlow works fine. How-
ever when elephant flows happen to have a high concur-
rency and incast happens, RepSYN is able to better survive
the extreme cases.

5.4 Mininet Emulation

To verify the performance of RepNet in a larger scale net-
work with higher path diversity, we conduct experiments
using Mininet [25]. Mininet is a high fidelity network emu-
lator for software-defined networks on a single Linux
machine. All the scripts used for evaluation here is available
online [2].

5.4.1 Mininet Configuration

To guarantee high fidelity of the emulation results, we use
a Mininet 2.2.0 virtual machine (official VM distributed
with Ubuntu 14.04 LTS 64-bit) running on an Amazon EC2
c3.4xlarge instance, which has 16 vCPUs and 30 GB
memory.

We create a 6-pod fat-tree without oversubscription. This
is a 3-tier topology with 6 core switches, 18 aggregation
switches, and 18 ToR switches. Each rack holds 3 hosts. As a
result, it supports 54 hosts with 6 equal cost paths between
hosts for different pods. Note that all links in the topology
are set to 50 Mbps because of the limited switching ability on
a single machine. The buffer size at each switch output port
is configured to 100 packets. To enable ECMP, an open-
source POX controller module® is used. The controller imple-
ments the ECMP five-tuple hash routing as in RFC 2992.

6. https:/ /bitbucket.org/msharif /hedera/src

001020304 050607 08
Average Traffic Load

00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.
Average Traffic Load

Flows are generated in exactly the same way in our testbed
experiments using the empirical web search workload.

5.4.2 Emulation Results

We plot the average, 99%ile and 99.9%ile FCT under various
traffic loads in Fig. 18.

Salient Benefit at Tail or High Load. Not surprisingly, both
RepFlow and RepSYN show benefits for tail latency or
under high load (> 0.4), and the figures show similar trends
to Figs. 11 and 12. However, one significant difference is
that RepSYN is able to approximate or even outperform
RepFlow. The reason is that with more paths available, con-
gestion level on a single path is less fluctuating. Therefore,
RTTs of the SYN packets can accurately estimate the conges-
tion level throughout the transmission process of a single
mice flow, with less overhead of redundant bytes.

Low Traffic Load (< 0.4). However, under low loads, we
cannot see much benefit from using RepNet. In some cases,
they are even worse than the stack TCP. This is due to the
controller overhead in Mininet which we explain now.

5.4.3 Discussion

Since Mininet is originally designed to emulate a software-
defined network, traffic is tightly controlled by a centralized
controller, i.e., a POX controller process. This makes Mini-
net an imperfect tool for traditional network emulation.

When a flow starts in Mininet, its SYN is identified as an
unknown packet by the first switch it encounters, and is for-
warded to the controller immediately. Then the controller
runs ECMP for this packet, and installs new forwarding
rules on all switches along the corresponding path. This
process usually takes ~1 ms (as the ping result suggests)
independent of the network state. With a large number of
flows starting around the same time the controller is easily
congested. Flow replication aggravates the controller over-
load. This results in the distortion of flow latency, which
does not exist in real data center networks. Nevertheless, in
most cases, we can still benefit from using RepNet despite
the controller overhead.

6 RELATED WORK

Motivated by the drawbacks of TCP, many new data center
transport designs have been proposed. We briefly review the
most relevant prior work here. We also introduce some addi-
tional work that uses replication in wide-area Internet, Map-
Reduce, and distributed storage systems for latency gains.
Data center transport. DCTCP [8] and HULL [9] use ECN-
based adaptive congestion control and appropriate throttling

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

https://bitbucket.org/msharif/hedera/src

260

of long flows to keep the switch queue occupancy low in order
to reduce short flows’ FCT. D? [50], D2TCP [46], and PDQ [28]
use explicit deadline information to drive the rate allocation,
congestion control, and preemptive scheduling decisions.
DeTail [53] and pFabric [10] present clean-slate designs of the
entire network fabric that prioritize latency sensitive short
flows to reduce the tail FCT. FUSO [16] attempts to strip a
flow and send it via multiple paths, and utilize the lightly-
loaded paths to expedite loss recovery on the heavily-loaded
paths. All of these proposals require modifications to switches
and operating systems. Our design objective is different: we
strive for a simple way to reduce FCT without any change to
TCP and switches, and can be readily implemented at layers
above the transport layer. RepNet presents such a design
with simple flow replication that works with any existing
transport protocol.

Replication for latency. Though seemingly naive, the gen-
eral idea of using replication to improve latency has gained
increasing attention in both academia and industry for its
simplicity and effectiveness. [5] proposes to employ dupli-
cated SYN packets for path selection in a multi-path system,
which is similar to RepSYN. The proposed implementation
is in the transport layer. It requires both the SYNs and the
SYN-ACKs to include unique identifiers, such that the
inbound and outbound paths can be selected separately.
RepSYN is implemented in the application layer on top of
legacy TCP. Google reportedly uses request replications to
rein in the tail response times in their distributed systems
[18]. Vulimiri et al. [48] argue for the use of redundant oper-
ations as a general method to improve latency in various
systems, such as DNS, databases, and networks. RANS [30]
makes the network stack be aware of duplicated applica-
tion-layer requests, such that flows can be well scheduled
for shorter latencies. RepNet, if implemented on top of its
APIs, can benefit from such scheduling technique.

7 CONCLUDING REMARKS

We presented the design, analysis, implementation, and eval-
uation of RepNet, a low-latency application layer transport
module based on node which provides socket APIs to enable
flow replication. Experimental evaluation on a real testbed
and in Mininet demonstrates its effectiveness on both mean
and tail latency for mice flows. We also proposed RepSYN to
alleviate its performance degradation in incast scenarios.

ACKNOWLEDGMENTS

The work was supported in part by the Hong Kong RGC
ECS-21201714, GRF-11202315, and CRF-C7036-15G. Part of
this work was presented at IEEE INFOCOM 2014.

REFERENCES
[1] nodejs official website. (2017). [Online]. Available: https://nodejs.
org

[2] RepNet experiment code. (2017). [Online]. Available: https://
bitbucket.org/shuhaoliu/repnet_experiment

[3] RepNetsource code. (2017). [Online]. Available: https:/ /bitbucket.
org/shuhaoliu/repnet

[4] K. Prasad, K. Norton, and T. Coatta, “Node at LinkedIn: The pur-
suit of thinner, lighter, faster,” ACM Queue Large-Scale Implementa-
tions, vol. 11, no. 12, pp. 40:40-40:48, Dec. 2013.

[5] K. Agarwal, “Path selection using TCP handshake in a multipath
environment,” U.S. Patent 14 164 422, Jul. 30, 2015.

(6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 1, JANUARY/FEBRUARY 2021

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM SIGCOMM
Conf. Data Commun., 2008, pp. 63-74.

M. Alizadeh, et al., “CONGA: Distributed congestion-aware load
balancing for datacenters,” in Proc. ACM SIGCOMM Conf., 2014,
pp- 503-514.

M. Alizadeh, et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., 2010, pp. 63-74.

M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and
M. Yasuda, “Less is more: Trading a little bandwidth for ultra-
low latency in the data center,” in Proc. USENIX Conf. Netw. Syst.
Des. Implementation, 2012, pp. 19-19.

M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. M. B. Prabhakar, and
S. Shenker, “pFabric: Minimal near-optimal datacenter transport,”
in Proc. ACM SIGCOMM Conf., 2013, pp. 435-446.

A. Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network,” Nov. 2014. [Online]. Available:
https://code.facebook.com/posts/360346274145943/
introducing-data-center %-fabric-the-next-generation-facebook-
data-center-network/

G. Appenzeller, I. Keslassy, and N. McKeown , “Sizing router buf-
fers,” in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols
Comput. Commun., 2004, pp. 281-292.

W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun, “PIAS:
Practical information-agnostic flow scheduling for data center
networks,” in Proc. 13th ACM Workshop Hot Topics Netw., 2014,
Art. no. 25.

O. Boxma and B. Zwart, “Tails in scheduling,” SIGMETRICS
Perform. Eval. Rev., vol. 34 no. 4: pp. 13-20, Mar. 2007.

N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP
latency,” in Proc. IEEE Conf. Inf. Comput. Commun., 2000, pp. 1742—
1751.

G. Chen, et al., “Fast and cautious: Leveraging multi-path diver-
sity for transport loss recovery in data centers,” in Proc. USENIX
Annu. Tech. Conf., 2016, pp. 29-42.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to Algorithms. Cambridge, MA, USA: MIT press Cambridge,
2001.

J. Dean, “Achieving rapid response times in large online services,”
Berkeley AMPLab Cloud Seminar, Mar. 2012. [Online]. Available:
http:/ /research.google.com/people/jeff/latency.html

J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM,
vol. 56 no. 2, pp. 74-80, Feb. 2013.

N. Dukkipati, et al.,, “An argument for increasing TCP’s initial
congestion window,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 40 no. 3, pp. 26-33, Jun. 2010.

S. Foss, Wiley Encyclopedia of Operations Research and Management
Science. Hoboken, NJ, USA: Wiley, 2011.

A. Greenberg, et al., “VL2: A Scalable and Flexible Data Center
Network,” in Proc. ACM SIGCOMM Conf. Data Commun., 2009,
pp- 51-62.

D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Funda-
mentals of Queueing Theory. Hoboken, NJ, USA: Wiley-Interscience,
2008.

H. Han, S. Shakkottai, C. V. Hollot, R. Srikant, and D. Towsley,
“Multi-path TCP: A joint congestion control and routing scheme
to exploit path diversity in the Internet,” IEEE/ACM Trans. Netw.,
vol. 14 no. 6, pp. 1260-1271, Dec. 2006.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emu-
lation,” in Proc. 8th ACM Int. Conf. Emerging Netw. Experiments
Technol., 2012, pp. 253-264. .

K. He, E. Rozner, K. Agarwal, W. Felter,]J. Carter, and A. Akella,
“Presto: Edge-based load balancing for fast datacenter networks,”
in Proc. ACM SIGCOMM Conf. Special Interest Group Data Com-
mun., 2015, pp. 465-478.

J. Heidemann, K. Obraczka, and J. Touch, “Modeling the perfor-
mance of HTTP over several transport protocols,” IEEE/ACM
Trans. Netw., vol. 5 no. 5, pp. 616630, Oct. 1997.

C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing flows
quickly with preemptive scheduling,” in Proc. ACM SIGCOMM
Conf. Appl. Technol. Archit. Protocols Comput. Commun., 2012,
pp- 127-138.

C. Hopps, “Analysis of an equal-cost multi-path algorithm,” Nov.
2000. [Online]. Available: http://tools.ietf.org/html/rfc2992

A. M. Iftikhar, F. Dogar, and 1. A. Qazi, “Towards a redundancy-
aware network stack for data centers,” in Proc. ACM Workshop Hot
Topics Netw., 2016, pp. 57-63.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

https://nodejs.org
https://nodejs.org
https://bitbucket.org/shuhaoliu/repnet_experiment
https://bitbucket.org/shuhaoliu/repnet_experiment
https://bitbucket.org/shuhaoliu/repnet
https://bitbucket.org/shuhaoliu/repnet
https://code.facebook.com/posts/360346274145943/introducing-data-center%-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center%-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center%-fabric-the-next-generation-facebook-data-center-network/
http://research.google.com/people/jeff/latency.html
http://tools.ietf.org/html/rfc2992

LIU ET AL.: REPNET: CUTTING LATENCY WITH FLOW REPLICATION IN DATA CENTER NETWORKS

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, C. Kim,
and A. Greenberg, “EyeQ: Practical network performance isola-
tion at the edge,” in Proc. USENIX Conf. Netw. Syst. Des. Implemen-
tation, 2013, pp. 297-312.

S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of datacenter traffic: Measurements & analysis,” in
Proc. 9th ACM SIGCOMM Conf. Internet Meas., 2009, pp. 202-208.
R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,”
in Proc. ACM 3rd ACM Symp. Cloud Comput., 2012, Art. no. 9.

F. P. Kelly, “Notes on effective bandwidths,” in Stochastic Net-
works: Theory and Applications. Oxford, UK.: Oxford University
Press, 1996, pp. 141-168.

A. Lakshmikantha, C. Beck, and R. Srikant, “Impact of file arrivals
and departures on buffer sizing in core routers,” IEEE/ACM Trans.
Netw., vol. 19 no. 2, pp. 347-358, Apr. 2011.

C. Lee, C. Park, K. Jang, S. Moon, and D. Han, “Accurate latency-
based congestion feedback for datacenters,” in Proc. USENIX
Conf. Annu. Techn. Conf., 2015, pp. 403—415.

M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic
behavior of the TCP congestion avoidance algorithm,” ACM
SIGCOMM Comput. Commun. Rev., vol. 27 no. 3, pp. 67-82, Jul.
1997.

R. Mittal, et al., “TIMELY: RTT-based Congestion Control for the
Datacenter,” in Proc. ACM SIGCOMM Conf. Special Interest Group
Data Commun., 2015, pp. 537-550.

A. Munir, et al., “Minimizing flow completion times in data cen-
ters,” in Proc. IEEE Conf. Inf. Comput. Commun., 2013, pp. 2157-2165.
J. Padhye, V. Firoiu, D. Towsley, and]J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in
Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Com-
put. Commun., 1998, pp. 303-314.

A. Phanishayee, et al, “Measurement and analysis of TCP
throughput collapse in cluster-based storage systems,” in Proc.
USENIX Conf. File Storage Technol., 2008, Art. no. 12.

R.S. Prasad and C. Dovrolis, “Beyond the model of persistent TCP
flows: Open-loop versus closed-loop arrivals of non-persistent
flows,” in Proc. IEEE Annu. Simulation Symp., 2008, pp. 121-130.

A. Singh, et al., “Jupiter Rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM
SIGCOMM Conf. Special Interest Group Data Commun., 2015,
pp- 183-197.

M. Slee, A. Agarwal, and M. Kwiatkowski, “Thrift: Scalable cross-
language services implementation,” Facebook, 2007, https://
thrift.apache.org/static/files/thrift-20070401.pdf

S. Tilkov and S. Vinoski, “Node. js: Using javascript to build high-
performance network programs,” IEEE Internet Comput., vol. 14,
no. 6, pp. 80-83, Nov.-Dec. 2010.

B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware data-
center TCP (D2TCP),” in Proc. ACM SIGCOMM Conf. Appl. Tech-
nol. Archit. Protocols Comput. Commun., 2012, pp. 115-126.

V. Vasudevan, et al., “Safe and effective fine-grained TCP retrans-
missions for datacenter communication,” in Proc. ACM SIG-
COMM Conf. Data Commun., 2009, pp. 303-314.

A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy,
and S. Shenker, “Low latency via redundancy,” in Proc. ACM
9th Int. Conf. Emerging Netw. Experiments Technol., 2013, pp.
283-294.

P. Wang, H. Xu, Z. Niu, D. Han, and Y. Xiong, “Expeditus: Dis-
tributed congestion-aware load balancing in clos data center
networks,” in Proc. ACM 3rd ACM Symp. Cloud Comput., 2016,
442-455.

C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron, “Better
never than late: Meeting deadlines in datacenter networks,” in
Proc. ACM SIGCOMM Conf., 2011, pp. 50-61.

H. Xu and B. Li, “RepFlow: Minimizing flow completion times
with replicated flows in data centers,” in Proc. IEEE Conf. Inf. Com-
put. Commun., 2014, pp. 1581-1589.

Y. Xu, Z. Musgrave, B. Noble, and M. Bailey, “Bobtail: Avoiding
long tails in the cloud,” in Proc. USENIX Conf. Netw. Syst. Des.
Implementation, 2013, pp. 329-342.

D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
Reducing the flow completion time tail in datacenter networks,”
in Proc. ACM SIGCOMM Conf. Appl. Technol. Archit. Protocols Com-
put. Commun., 2012, pp. 139-150.

Y. Zhu, et al, “Congestion control for large-scale RDMA
deployments,” in Proc. ACM SIGCOMM Conf. Special Interest
Group Data Commun., 2015, pp. 523-536.

261

Shuhao Liu received the BEng degree from
Tsinghua University, in 2012. He is currently
working toward the PhD degree in the Depart-
ment of Electrical and Computer Engineering,
University of Toronto. His current research inter-
ests include software-defined networking and big
data analytics.

Hong Xu received the BEng degree from the
Department of Information Engineering, The Chi-
nese University of Hong Kong, in 2007, and the
MASc and PhD degrees from the Department of
Electrical and Computer Engineering, University
of Toronto. He joined the Department of Computer
Science, City University of Hong Kong in 2013,
where he is currently an assistant professor. His
research interests include data center networking,
SDN, NFV, and cloud computing. He was the
recipient of an Early Career Scheme Grant from

the Research Grants Council of the Hong Kong SAR, 2014. He also
received the best paper awards from IEEE ICNP 2015 and ACM CoNEXT
Student Workshop 2014. He is a member of the ACM and |IEEE.

\.

Libin Liu received the BE degree in software
engineering from Shandong University, in 2015.
He is currently working toward the PhD degree in
the Department of Computer Science, City Uni-
versity of Hong Kong. His current research inter-
ests include network function virtualization and
data center networks.

Wei Bai received the BE degree in information
security from Shanghai Jiao Tong University,
China, in 2013 and the PhD degree in computer
science from the Hong Kong University of Sci-
ence and Technology, in 2017. He is now a
researcher in Microsoft Research Asia, Beijing,
China. His current research interests include the
area of data center networks.

Kai Chen received the PhD degree in computer
science from Northwestern University, Evanston,
lllinois, in 2012. He is an associate professor in
the Department of Computer Science and Engi-
neering, Hong Kong University of Science and
Technology. His research interests include net-
worked systems design and implementation,
data center networks, data centric networking,
and cloud and big data systems. He is interested
include the finding simple yet effective solutions
to real-world networking systems problems.

Zhiping Cai received the BS, MS and PhD
(Hons.) degrees in computer science and tech-
nology from the National University of Defense
Technology (NUDT), Changsha, Hunan, in July
1996, April 2002 and December 2005, respec-
tively. He is currently a professor in the Depart-
ment of Networking Engineering, College of
Computer, National University of Defense Tech-
nology, Changsha, Hunan, China. His doctoral
dissertation won the Outstanding Dissertation
Award of the China PLA. His research interests

include network security, network measurement and network virtualiza-
tion. He is a member of the ACM and IEEE.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on March 23,2025 at 04:11:36 UTC from IEEE Xplore. Restrictions apply.

https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

