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Abstract—The combination of Mobile Crowdsensing (MCS)
and truth discovery has benefited the ubiquitous monitoring
and analysis of the physical world. To address the concerns
alongside user data collection, the literature has partially studied
data privacy protection for truth discovery. Yet, the threats of
location leakage remain overlooked in such contexts. For joint
accommodating privacy protection and truth elaboration, we pro-
pose to leverage differential privacy for distributed user location
obfuscation and explore spatial correlation for corresponding
observation’s value calibration. We form this process into a truth
estimation deviation minimization problem under differential pri-
vacy and obfuscation requirements. By theoretically transforming
it into probabilistic calibration residual optimization, the problem
can be solved via linear programming. Evaluation on real-world
temperature and humid sensing data shows its effectiveness on
providing significant location distortion distance and practically
acceptable time consumption. Results also reveal an up to 53%
truth discovery accuracy improvement compared to the SCP
baseline.

Index Terms—Mobile crowdsensing, truth discovery, location
privacy, differential privacy.

I. INTRODUCTION

The rich sensing equipment and pervasive communication

capacity of mobile devices have promoted the recent de-

velopment of Mobile crowdsensing paradigm [1]. With the

participatory or opportunistic engagement of mobile users,

MCS realizes large-scale real-world data sensing and collec-

tion, which has supported a broad spectrum of applications,

including environmental monitoring, city sensing, and smart

transportation. For example, the temperature of smartphone

batteries is used in [2] as indirect thermometers of the oper-

ating environment for ubiquitous temperature monitoring.

Due to the noisy nature of user-contributed observations,

truth discovery is considered an essential step of MCS tasks

for resolving possibly conflicted reports [3]. Truth discovery

approaches (e.g., CRH [4]) iteratively perform weighted ag-

gregation on multiple observations and evaluate user weights

(a.k.a., reliability) towards refined truth estimations. Such a

process is carried out in different spatio-temporal regions

independently for constant insights parsing (§ III).

User privacy is a general concern on the data-driven MCS

applications and has been widely investigated [3] [5] [6] [7]

for both user benefits and regulation purpose. In particular,

the designs in terms of truth discovery rely on either se-

cure computation or noise injection. Wherein, homomorphic

encryption [7] and Gaussian perturbation [3] are adopted to

protect user data and truth estimation performance simulta-

neously. Although effective in protecting data privacy, we

point out that users’ location privacy is seldom considered and

not carefully taken care of during truth discovery on MCS.

Simply encrypting locations with data protection techniques

would ruin their basic property as spatial indices, because,

unlike their data counterparts, locations should be explicitly

and discretely represented for dividing observations into grids.
Existing location privacy-preserving methods for MCS are

also ill-suited in the context of truth discovery. Along this

line of work, recent research efforts have been primarily

devoted to tailoring differential privacy to different sensing

quality indicators, such as minimizing traveling distance [8],

enlarging sensing coverage [9], and maintaining data recov-

ery accuracy [10]. However, compared with these objectives,

truth discovery is more sensitive to location perturbation and

would experience significant accuracy degradation, or even

wrong conclusions when the estimations are assigned to wrong

locations. As far as we know, [11] is the only work that

investigates location-preserving truth discovery for MCS. Yet,

their work is designed on an infeasible assumption that there

exists a trusted fog node that can pre-aggregate observations

from multiple grids to hide their raw locations. The void of

location obfuscation strategy for crowdsensing truth discovery

motivates our work.
This paper explores the joint accommodation of location

privacy protection and effective truth discovery in MCS.

Basically, we propose to attain indistinguishable location ob-

fuscation with differential privacy on behalf of the users (i.e.,

privacy requirement), and refer to the spatial correlation of

different sensing units for dynamic observation calibration

towards MCS server’s benefits (§ IV-A). To achieve both,

we formulate the truth deviation minimization problem with

privacy constraints and prove its equivalent form as optimizing

incurred residuals (§ IV-B). The main contributions of this

work are:

• We present a probabilistic location obfuscation design

for privacy-preserving truth discovery in crowdsensing

based on differential privacy [10] and spatial correlation

exploration.

• We formally model the location obfuscation problem

as minimizing global truth estimation deviation under

differential privacy constraints. We reduce the problem to

inter-grids regression residual minimization and analyze

the computation complexity.978-1-6654-3540-6/22 © 2022 IEEE
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• We evaluate the proposal based on real-world environ-

ment sensing datasets. The results demonstrate its ef-

fectiveness w.r.t. location distortion and acceptable time

overhead and show truth discovery accuracy advantages

over the baseline of up to 53%.

II. RELATED WORK

A. Preserving Location Privacy in MCS

Existing location privacy protection techniques in MCS

can be roughly categorized as: obfuscation-based approaches

that perturb locations to insensitive places, cloaking-based

approaches that hide the precise location behind a coarse area,

and encryption approaches that encrypt location together with

the data [12]. Among them, obfuscation is the most popular

strategy recently for the introduction of differential privacy in

providing theoretical privacy guarantees.

The general design principle in obfuscation-based ap-

proaches is to perturb location and maintain sensing quality

simultaneously. For example, the quality of user recruitment

is considered in [8], where users manage to minimize the

expected traveling distances after changing their location tags.

Azhar et al. [9] investigate the sensing coverage maximiza-

tion problem under differential-obfuscated locations. In [1]

and [10], authors attempt to reduce data recovery error during

location obfuscation.

However, these approaches are not effective in truth discov-

ery tasks on MCS as estimating truth on observations from

arbitrary locations would degrade the estimation accuracy.

B. Privacy-preserving Truth Discovery

The concerns and protection of data privacy in truth discov-

ery are also widely studied, either based on secure multi-party

computation or noise injection. For the former category, Zheng

et al. [7] design a secure sum protocol for privacy-aware truth

discovery in MCS, which is criticized for requiring frequent

interaction between users and the server. Furthermore, the

privacy of individual weights (reliability) is considered in [5],

and a homomorphic cryptosystem is used to protect reliability

and data security. To avoid the intensive secure computation

in these approaches, the latter category [3] [6] introduces

dedicated perturbation (e.g., differential privacy noise) on the

data for efficient data protection.

Unfortunately, these approaches fail to handle users’ loca-

tion privacy during MCS tasks. Truth discovery of MCS is

conducted on the location granularity, i.e., performed in each

grid independently. Different from data protection, the location

information cannot be disclosed even after the aggregation,

as aggregation can hide the original data, but the location

property is inherited in this process.

III. PRELIMINARIES

This section depicts the workflow of MCS and truth discov-

ery. We list the frequently used notations in Table I.

TABLE I
FREQUENTLY USED NOTATIONS.

Notations Description

l ,l∗ Original location and its obfuscated location

Vl ,Vl∗ The set of observations at location l and l∗

Nl ,Nl∗ # users at location l and l∗, Nl = |Vl |
L The set of all interested locations

vl ,vl∗ The truth estimation for location l and l∗

P (l∗|l) The probability of obfuscating location l to l∗

ωk The weight of the k-th user at specific location

V(k) The set of observations of the k-th user

10 9.5

8.5

9.0

14

15

14.5

15 9.0

Data collection Truth discovery
Monitored 

temperature

ReliabilityTruth estimationsCrowdsensing 
observations

privacy accuracy

Distributed 
users

Fig. 1. Real-world truth discovery based on MCS systems. Temperature
monitoring is used as an example here and multiple co-located observations
are aggregated for an ultimate estimation in each grid.

A. MCS System Overview

MCS has been adopted in applications, such as environ-

mental monitoring, city sensing, and smart transportation for

distributed phenomena sensing and data collection of inter-

ested regions [2] [13]. A typical MCS task consists of a

user-oriented data collection phase and a server-centric truth

discovery phase, as shown in Fig. 1.

During data collection, the targeted region is divided into

grids and users submit observations to each grid according to

their locations. Exposing locations during this phase consti-

tutes significant privacy concerns for users, which may make

them reluctant to participate in the sensing tasks. During

truth discovery, MCS server attempts to elaborate on the

happening truth of a grid based on multiple observations

from different users. The accuracy of the deduced truth is

of utmost importance for the server as deviated estimations

would mislead decision-making and application quality.

B. Truth Discovery Formulation

Given multiple noisy observations Vl at location l, truth

discovery approaches can infer user weights (reliability) ωk

and estimate truth vl via weighted observation aggregation.

For example, in the temperature monitoring task of Fig. 1,

truth estimation (i.e., 10) is obtained based on the observations

of four users in the upper left grid, and the reliability of each

user is in turn evaluated with the estimation.

Specifically, it initially assigns random weights for users

and iteratively performs data aggregation and weight update

towards convergence [5].

Aggregation. Given the current user weights {ωk}Nl

k=1 of

location l, the estimation of l is obtained by weighted aggre-

2022 IEEE Global Communications Conference: Communication & Information Systems Security

904
Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 11,2025 at 03:58:31 UTC from IEEE Xplore.  Restrictions apply. 



gating the observations:

vl=

∑Nl

k=1 ωk ·Vl(k)∑Nl

k=1 ωk

. (1)

Obviously, the estimation leans more on those reliability users

with higher weights.

Weight update. Then the newest estimations are regarded

as the ground truth. User weights can thus be updated by

measuring the distance between their observations and the

current truth. In particular, we use the CRH model [4] here:

ωk= − log(
d(Vl(k), vl)∑Nl

k′=1 d(Vl(k′), vl)
). (2)

As a monotonically decreasing function, CRH assigns users

with small differences to the truth estimation a high weight.

These two steps are repeated until the estimation between two

iterations is smaller than a threshold (set to 0.1 in § V).

Note that a user can temporally report multiple observations

in different grids, given that it may move in the target region.

The weights assessment in Equ. 2 is based on observations

in a certain time interval (according to the time granularity

requirement of truth discovery), during which we assume a

user can only make observations in one grid. For a successive

sensing and estimation process, we will assign user weights

according to its reliability evaluated in the previous rounds.

IV. OPTIMIZING TRUTH DISCOVERY UNDER LOCATION

OBFUSCATION

In this section, we first introduce our privacy-preserving

design for truth discovery on MCS, and then formulate the

obfuscation problem with a discussion on its solution and

complexity.

A. Our Privacy-preserving Design

As shown in Fig. 2, we propose to protect user location

privacy by obfuscating it according to differential privacy [14]

and maintain truth discovery quality with data calibration.

1) Obfuscation for differential privacy: We follow the

adversary assumption of [14] that an adversary has side

information of location distribution P (l) for inferring user

location (probabilistic model). By observing a user’s obfus-

cated location l∗, s/he can induce its posterior distribution with

P (l|l∗)= P (l∗|l)·P (l)∑
l′∈L P (l∗|l′)·P (l′) .

Intuitively, if an obfuscated location has an indistinguishable

probability of being mapped from the original location and any

other locations, then the adversary cannot learn more about

the posterior location with such an obfuscation. Formally, this

requires the obfuscation to satisfy:

P (l∗|l) ≤ eε · P (l∗|l′) ∀l, l∗, l′ ∈ L, (3)

where ε denotes the differential privacy factor and is practi-

cally set by the privacy budget. A smaller ε indicates a stricter

privacy requirement that the differences between obfuscation

probabilities of different locations should be more similar.

P(l9|l1), f1→ 9(11.0)

Truth discovery on 
location-obfuscated 
and value calibrated 
observations

P(l2|l1), f1→ 2(10.5)

P(l5|l1), f1→ 5(12.5)

P(l5|l1), f1→ 5(9.8)

Fig. 2. Differential privacy-based location obfuscation and linear regression-
based data adjustment.

2) Calibration for estimation quality: Discovering the truth

of l∗ with observations of l inevitably degrades the estimation

accuracy. For example, in Fig. 2, the 4 users’ observations are

spatially mixed with reports that are very likely not sensed

in the corresponding grid. We can relieve this tension by

exploring spatial correlation [1] among the data in different

grids. Following the assumption in [10], we propose to learn

the correlation by performing linear regression on some obser-

vations of each location pair (l, l∗) to obtain vl→l∗=freg
l→l∗(vl).

In this way, a user chooses its obfuscated location according

to P (l∗|l), and meanwhile, calibrates its observation with freg

to yield its report < l∗, vl→l∗ >. Note that linear regression

is performed in a centralized way by the MCS platform

periodically, which is practically feasible as all the distributed

observations are gathered to it.

As an empirical calibration, the fitted observations are still

different from the field observations, which can be theo-

retically measured by the residual between regression and

estimation:

R(l, l∗)=
∑

|Vl→l′(k)− Vl∗(k
′)|. (4)

Combining it with the obfuscation probability, we can calcu-

late the probabilistic residual between l and l∗ as P (l∗|l) ·
R(l, l∗).

B. Building Obfuscation Matrix

We attempt to take a balance between privacy requirements

and truth discovery accuracy that may be degraded by ob-

fuscation. By setting the requirement as a constraint and the

accuracy as an objective, we can formulate an optimization

problem that tunes obfuscation strategy P (l∗|l) towards the

globally minimum truth estimation deviation.

argmin
P

1

|L|2
∑
l∈L

∑
l∗∈L

|vl→l∗ − vl∗ | (5)

s.t. P (l∗|l) ≤ eε · P (l∗|l ′), ∀l , l∗, l ′ ∈ L (6)∑
l∗∈L

P (l∗|l)=1, ∀l ∈ L (7)

∑
l∈L

P (l) · P (l∗|l)=P (l), ∀l∗ ∈ L (8)

P (l∗|l) ≥ 0, ∀l , l∗ ∈ L, (9)

where Equ. 6 is the differential privacy constraint under

privacy budget ε, Equ. 7 and Equ. 9 are probability constraints,

and Equ. 8 is used to assure the amount of observations in
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each grid after obfuscation is probabilistically the same. By

retaining observation distributions in the entire area, we intend

to avoid biased truth estimation based on fewer observations

in each grid.

Theorem IV.1. The minimization of truth estimation differ-
ences between the original and obfuscated locations (Equ. 5)
equals the minimization of the probabilistic residuals between
all location pairs.

We will use the Sum Reduction Inequality Lemma in [3]

during the proof of Theorem IV.1. Briefly, it gives that if

ωk is a monotonically decreasing function of V(k), then
∑N

k=1 ωk·V(k)
∑N

k=1 ωk
≤

∑N
k=1 V(k)

N .

Proof. By replacing truth estimation in the optimization ob-

jective with Equ. 1, we have:

∑
l∈L

∑
l∗∈L

|vl→l∗ − vl∗ |

=
∑
l∈L

∑
l∗∈L

|
∑Nl

k=1 ωk ·Vl→l∗(k)∑Nl

k=1 ωk

−
∑Nl∗

k′=1 ωk′ ·Vl∗(k
′)∑Nl∗

k′=1 ωk′
|

=
∑
l∈L

∑
l∗∈L

|
∑Nl

k=1

∑Nl∗
k′=1 ωk · ωk′ · (Vl→l∗(k)−Vl∗(k

′))∑Nl

k=1

∑Nl∗
k′=1 ωk · ωk′

|

≤
∑
l∈L

∑
l∗∈L

∑Nl

k=1

∑Nl∗
k′=1 |ωk · ωk′ ·Vl→l∗(k)−Vl∗(k

′)|∑Nl

k=1

∑Nl∗
k′=1 ωk · ωk′

≤
∑
l∈L

∑
l∗∈L

∑Nl

k=1

∑Nl∗
k′=1 |Vl→l∗(k)−Vl∗(k

′)|
Nl ·Nl∗

(Reduction)

=
∑
l∈L

∑
l∗∈L

1

Nl
·

Nl∑
k=1

1

Nl∗
·
Nl∗∑
k′=1

|Vl→l∗(k)−Vl∗(k
′)|,

which equals the expectation of the differences between

inferred observations and raw observations of l∗, i.e., the

expectation of residual between location pair (l, l∗). With the

residual definition in Equ. 4, we have:

1

|L|2
∑
l∈L

∑
l∗∈L

|vl→l∗ − vl∗ | ⇐⇒
∑
l∈L

∑
l∗∈L

P (l∗|l) ·R(l, l∗)

(10)

According to Theorem IV.1, the optimization problem is

then transformed into:

argmin
P

∑
l∈L

∑
l∗∈L

P (l∗|l) ·R(l, l∗)

s.t. Equs. 6, 7, 8, 9.

(11)

Interestingly, we note that Equ. 11 has a similar form with the

optimization problem in [10], which attempts to maximize data

recovery accuracy during differential privacy amplification.

The rationale is that we both refer to the spatial correlation of

crowdsensing data for mitigating negative effects of privacy

protection.

C. Solution and Computation Analysis

Equ. 11 is a typical linear optimization problem with |L|2
variables from the obfuscation matrix. Given these variables,

we can parse |L|3 constraints from Equ. 6, |L|2 constraints

from Equ. 9, and |L| constraints from Equs. 7 and 8, re-

spectively. We propose to use the simplex of linear program-

ming to solve this optimization problem, whose computa-

tion complexity is proportional to the number of constraints

|L|3+|L|2+2× |L|.
The obfuscation matrix is supposed to be deduced and

updated by the honest-but-curious server and distributed to

all potential participants in the target region. The differential

privacy property [14] ensures that even if an adversary obtains

the matrix, s/he possesses bounded location inference capacity

that is irrelevant to its prior knowledge.

Finally, for uk at location l, it will report its observation

Vk at an obfuscated location l∗ with probability of P (l∗|l).
Then the MCS server performs truth discovery on the location-

obfuscated data collection. Wherein, uk’s reliability is esti-

mated as:

−log
|v̂l∗ − vl→l∗(k)|∑Nl∗
p=1 |v̂l∗ − vl→l∗(p)|

,

which indicates that obfuscating data to lower-residual loca-

tions yields higher weight. This provides flexibility for users

to balance privacy requirements and their recorded reliability.

V. EVALUATION

We conduct experiments on real-world environment sensing

datasets by testing the proposal’s and baselines’ truth discovery

and location obfuscation performance.

A. Setup

Our test computer is equipped with Intel(R) Core i7-

1160G7@1.20GHz, 16GB RAM, and Windows10. We use

Python Pulp1 to solve the linear programming problem

(Equ. 11) for obtaining the obfuscation matrix under perfor-

mance target and privacy constraints.

Fig. 3. CDF of the regression scores on two datasets.

1https://coin-or.github.io/pulp/
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(a) varying ε on Temp. (b) varying ε on Hum. (c) varying granularity on Temp. (d) varying granularity on Hum.

Fig. 4. MAE on different datasets. When varying ε, spatial granularity is set to 10 ∗ 8; When varying the granularity, ε = ln2.

1) Datasets: We use real-world sensing data from Sen-
sorScope [15] to evaluate our design. Specifically, the tem-

perature and humidity data recorded in the EPFL campus

(260m × 400m) is adopted, termed as Temp and Hum. We

take the data of one week with a sampling interval of 1 hour,

which yields |L|∗7∗24 truth discovery tasks, sufficient for our

evaluation purpose. We divide them into equal-sized grids with

different spatial granularity during evaluation (e.g., grid size

30m×50m will divide the area into 10∗8 grids). To simulate

multiple users’ reports for truth discovery, for each grid, we

generate 6 users, whose data is obtained by adding Gaussian

noise2 (with deviations of 1 and 2 for Temp and Hum) on the

corresponding field record in the grid.

2) Metrics: We measure the truth discovery performance

with Mean Absolute Error (MAE) between the discovered truth

vl and the ground truth before adding noises. Lower MAE
indicates better truth discovery accuracy.

Besides the differential privacy guarantee, we further test

the caused location distortion of different obfuscation methods,

calculated with the Euclidean Distance, to show the privacy-

preserving performance.

3) Baselines: We compare the proposal’s performance with

Spatial Camouflage Participants (SCP) [1], the Laplacian

noise-based method (Lap) [14], and the raw truth discovery

method (No-privacy).

SCP is designed for location protection during data recovery

in MCS. It permutes locations in the same row (column)

to another row (column) simultaneously for preserving data

correlation in compressive sensing. We generate random per-

mutation for SCP in each sampling.

Lap refers to the typical location differential perturbation

mechanism that adds Laplacian noise on the original location.

Lap tends to perturb locations to nearby grids, so we set

P (l∗|l)=Norml(exp(−ε · d(l,l∗)
dmax

)) (dmax denotes the maxi-

mum distance between two locations), which is normalized

for each original location. For comparison fairness, we also

perform value calibration (§ IV-A2) for Lap after obfuscation.

B. Experimental Results

1) Regression performance: Recall that we propose to per-

form linear regression between each pair of grids for residual

estimation during obfuscation. Here, we use the data of the

2It is reported that error of user observations follow standard Gaussian
distribution [3].

1st day for regression and measure the performance with

coefficient of determination of the prediction, calculated as

1 − (
∑

(Vi −Vj)
2/

∑
(Vj −mean(Vj))

2). A larger score

(≤ 1) indicates a smaller residual, i.e., values in the tested

two grids are similar. Specifically, we empirically neglect

the intercept term during regression on Hum as its weak

inter-grid correlation could easily over-fit this term towards

extreme calibrations. As shown in the statistics of Fig. 3, most

pairs of grids in Temp have relatively large scores, while the

regression on Hum has nearly half pairs with scores smaller

than 0 (arbitrarily worse). The modest regression performance

of Hum causes larger residual and MAE than truth analysis

on Temp, as we will show next.
2) Truth discovery: We examine the proposal’s truth dis-

covery performance by comparing it with No-privacy and the

SCP and Lap baselines. On one hand, Fig. 4(a) and Fig. 4(b)

present the results under varying differential privacy level.

No-privacy and SCP have static MAEs as not considering,

so that not impacted by, the privacy budget/requirement. Our

method outperforms the two baselines for all the test cases

(outperforms SCP by a large margin). The advantage over Lap

stems from the optimization for reducing residual deviation.

Furthermore, we observe that our proposal causes larger MAE

in truth discovery with a smaller privacy budget (i.e., ε) as

stricter constraints will degrade the optimization value of truth

discovery residuals. It effectively controls the truth deduction

errors within certain bounds from No-privacy (i.e., 0.32 for

Temp and 1.2 for Hum, both smaller than the deviation of the

added Gaussian noises).
On the other hand, smaller grid size leads to denser grids

with different observations, thus larger inter-grid data bias.

As shown in Fig. 4(c) and Fig. 4(d), generally, the MAEs

of both our proposal and SCP increase with growing spatial

granularity, for having larger residual and differences between

data of the original and obfuscated locations. Lap always

attempts to obfuscate observations to nearby locations, so its

performance becomes better for retaining data at nearer grids

under denser granularity. Still, our proposal yields smaller

MAE than both baselines because it is optimized to obfuscate

locations of small residuals with high probability.
3) Location distortion: We test the averaged distortion

levels between users’ original location and obfuscated location

under varying differential privacy level and spatial granularity.

As shown in Fig. 5, both the baselines and our method

incur significant distortion that can sufficiently camouflage
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the original locations. In particular, our proposal yields larger

distortions than the baselines on both datasets under all the test

cases. Meanwhile, we can observe larger distortion gaps when

the privacy level is smaller, as nearby grids may not satisfy

the stricter privacy constraint, and thus are enforced to distant

grids. As shown in Fig. 5(b), the distortion is sensitive to the

granularity, which determines the unit distance in measuring

the distortion. Note that with an average distortion of more

than 100m in the 260∗400 region, the proposal still maintains

well truth estimation performance.

(a) varying ε (granularity: 10 ∗ 8). (b) varying granularity (ε=ln2).

Fig. 5. Location distortion under different obfuscation strategies.

4) Computation cost: Finally, we test the time overhead of

our proposal w.r.t., the linear regression, the obfuscation matrix

computation, and the truth discovery stages. Results on two

datasets are shown in Fig. 6(a) and Fig. 6(b). The overhead

increases with finer-grained spatial division because there are

more target grids for estimating obfuscation probability and

the number of privacy constraints increases accordingly. As ex-

pected, calculating the obfuscation matrix occupies most of the

resources for the optimization resolving process. Overheads

on the two datasets are similar as the complexity is mainly in

proportional to the number of grids. Note that the obfuscation

matrix only needs to be computed once or infrequently updated

for the target sensing area on MCS server, which makes the

overhead practically acceptable.

(a) Time costs on Temp. (b) Time costs on Hum.

Fig. 6. Time consumption of different stages in our proposal.

VI. CONCLUSION

This work studies the location privacy-preserving problem

in crowdsensing truth discovery. By identifying that exist-

ing efforts on data privacy protection in truth discovery is

not effective with perturbed location indices, we present the

design of location differential-obfuscation and observation

correlation-guided calibration. We model a linear program-

ming problem with truth estimation deviation as objective and

privacy requirements as the constraints. Theoretical analysis

on its inherent optimization form and computation complexity

is also presented. We evaluate our design by comparing its

performance with the No-privacy strategy and two state-of-

the-art baselines on real-world sensing datasets.
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