
Computers & Security 113 (2022) 102553

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Towards differential access control and privacy-preserving for secure

media data sharing in the cloud

Tengfei Zheng, Yuchuan Luo, Tongqing Zhou

∗, Zhiping Cai ∗

College of Computer, National University of Defense Technology, Hunan, 410073, China

a r t i c l e i n f o

Article history:

Received 24 March 2021

Revised 30 October 2021

Accepted 16 November 2021

Available online 19 November 2021

Keywords:

Privacy-preserving

Media data sharing

Traitor tracing

Differential access control

Proxy re-encryption

a b s t r a c t

The development of cloud computing techniques has promoted the continuous sharing of a tremendous

amount of media data. However, the involved parties in such processes usually share different or even

conflicting benefits, causing non-orthogonal security concerns. The data owners worry about their pri-

vate data being abused through illegal access or unauthorized redistribution by the requesters, while

the latter ones are vulnerable to being profiled (e.g., interests, age) through their data access histories.

Since most existing approaches address these problems individually, the security requirements of differ-

ent roles cannot be properly satisfied. In this paper, we attempt to provide a joint effort that flexibly

addresses the above security concerns. We first design a new cryptographic primitive (i.e., TFPRE-OT) by

exploiting type-based proxy re-encryption for fine-grained sharing and oblivious transfer for hiding the

access histories of data requesters. Using TFPRE-OT as the building block, a novel data sharing scheme is

proposed to achieve differential access control and protect privacy disclosure in general cloud comput-

ing settings. We provide a thorough security analysis, showing that the proposed method can fulfill all

desired security requirements. Finally, we validate the effectiveness of our design with both case studies

and extensive experiments.

© 2021 Elsevier Ltd. All rights reserved.

1

m

b

o

I

a

a

T

c

t

r

c

(

p

t

s

n

(

t

c

p

2

r

a

p

c

c

l

b

t

s

i

e

b

b

p

h

0

. Introduction

In recent years, due to the proliferation of online services and

obile technologies, the world has entered an era of multimedia

ig data. To analyze, store, and share such a tremendous amount

f media data (e.g., social media data Wu et al., 2016 , industrial

nternet of Things media data Sisinni et al., 2018 , and medical im-

ges Manikandan et al., 2019), an increasing number of individu-

ls and institutions are choosing to upload their content to clouds.

he cloud-based sharing paradigm is characterized by low energy

onsumption and resource multiplexing, and is thereby expected

o provide the data owners with unlimited computing and storage

esources. Nevertheless, this paradigm raises significant security

oncerns as the media content is exposed to public cloud servers

 Castiglione et al., 2017; Liu et al., 2017; 2014; Yu et al., 2010).

For the data owners, storing media data on cloud servers can

otentially disclose sensitive information and disengage it from

heir direct control. A straightforward, yet essential, countermea-

ure is to encrypt the outsourced data and enforce access con-
∗ Corresponding authors.

E-mail addresses: zhengtengfei@nudt.edu.cn (T. Zheng), luoyuchuan09@

udt.edu.cn (Y. Luo), zhoutongqing@nudt.edu.cn (T. Zhou), zpcai@nudt.edu.cn

Z. Cai).

c

T

n

p

i

ttps://doi.org/10.1016/j.cose.2021.102553

167-4048/© 2021 Elsevier Ltd. All rights reserved.
rol on it. However, general access control mechanisms can be too

oarse-grained for complicated sharing situations, wherein owners

refer differentiated content dispersal (Liu et al., 2019; Shao et al.,

015). In addition, in the vast majority of data-sharing cases, data

equesters are only supposed to access the data in question and

re not allowed to reveal them to others for profit or other pur-

oses without consent (Huang et al., 2020). Data owners’ commer-

ial interests would be damaged if authorized requesters later be-

ome traitors who illegally redistribute the media data to the pub-

ic (Zhang et al., 2018). Therefore, it is essential to entrust cloud-

ased data sharing with the capabilities of fine-grained access con-

rol and illegal data redistribution tracing. As for data requesters,

ince accessing records may reflect their private information (e.g.,

nterests), they would prefer to keep it secret from the data own-

rs in some scenarios (Han et al., 2015). Such concern should have

een seriously taken yet is overlooked by existing works on cloud-

ased data sharing.

To further clarify these concerns, we present a running exam-

le with Fig. 1 . Suppose an extensive photo gallery is stored in the

loud containing three sets of photos: cats, dogs, and buildings.

he data owner only wants to share his cat and dog photos, but

ot the building photos, with authorized requester Bob. For this

urpose, he needs to implement fine-grained access control on the

mages. Meanwhile, from the requester’s perspective, Bob would

https://doi.org/10.1016/j.cose.2021.102553
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2021.102553&domain=pdf
mailto:zhengtengfei@nudt.edu.cn
mailto:luoyuchuan09@nudt.edu.cn
mailto:zhoutongqing@nudt.edu.cn
mailto:zpcai@nudt.edu.cn
https://doi.org/10.1016/j.cose.2021.102553

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Fig. 1. A running example for security concerns on behalf of both the data owners

and the requesters during media sharing.

p

t

m

e

e

c

t

a

m

T

t

p

2

e

Z

c

e

i

u

p

t

t

d

i

t

i

c

m

s

e

s

s

i

c

G

r

r

S

t

c

e

o

a

t

i

t

H

r

b

e

e

m

w

o

fi

g

c

c

t

(

q

a

t

t

i

n

t

o

1

i

c

p

p

b

c

i

i

d

t

m

t

p

t

c

c

p

refer to access the cat photos without revealing access content

o prevent the data owner from inferring his interests. Finally, Bob

ight redistribute these photos to unauthorized requester Alice,

ither intentionally or unintentionally. The data owner should be

nabled to determine the traitor’s identity by analyzing the leaked

opies of the photos to prevent such disclosure; in short, a traitor

racing protocol is required.

In this paper, from a high-level view, we attempt to propose

 secure media data sharing scheme that comprehensively accom-

odates the concerns of both the data owners and the requesters.

o achieve this, the scheme should support differential access con-

rol 1 and access history hiding.

As the metadata that records the entity creation and usage,

rovenance is widely used to track cloud data usage (Hu et al.,

020; Muniswamy-Reddy et al., 2006). In particular, logging (Imran

t al., 2018; Suen et al., 2013) and block-chain (Liang et al., 2017;

hang et al., 2017) are common techniques for recording data pro-

essing and transmission history. Through these records, we can

asily track a leaker. Nevertheless, the number of images stored

n the cloud is tremendous, so it would be inefficient to track the

sage of each image by brutally querying the records. Moreover,

rovenance-based schemes may expose the access records, failing

o protect these personal histories for the requesters. Digital wa-

ermarking is another viable method for tracing illegal media re-

istribution (Cox et al., 1997; Rial et al., 2010). Generally speaking,

t involves first embedding a unique watermark in each copy of

he media data (mainly images) for every requester and then track-

ng the traitor by detecting the unique watermark from the leaked

opies. Following this idea, Zhang et al. (2018) propose a secure

edia sharing scheme with traitor tracing; however, all-or-nothing

haring strategies in Zhang et al. (2018) cannot satisfy the differ-

nt requirements and complex situations in today’s media sharing

cenarios.

Implementing fine-grained access control on encrypted data

tored in the cloud can solve this problem and is well-studied

n the cybersecurity domain. In this context, attribute-based en-

ryption (ABE) (Bethencourt et al., 2007; Fugkeaw and Sato, 2018;

oyal et al., 2006; Shao et al., 2015) can grant different decryption

ights to the requesters according to their attributes, while proxy

e-encryption (PRE) schemes (Ibraimi et al., 2008; Liu et al., 2019;

eo et al., 2013) utilize a proxy to re-encrypt the data according

o different types or conditions to facilitate the sharing of different

ontent.

Typically, dedicated encryption should be performed on differ-

nt parts of data to achieve fine-grained access control; however, it
1 We give the terminology of differential access control to denote the capabilities

f sharing differential data to different requesters (i.e., fine-grained access control)

nd tracking traitors from differential behaviours (i.e., whether illegal re-sharing has

aken place).

d

1

S

2
s hard to be implemented when considered together with traitor

racing and access histories hiding functionality. Specifically: (1)

ow can watermarks be embedded into dedicated encrypted data to

ealize differential access control? In fact, watermarks can be em-

edded in the encrypted data by utilizing the homomorphic prop-

rty of the encryption algorithm. However, as far as we know, no

xisting fine-grained access control schemes can perform water-

ark embedding operations without hindrance. A naive solution

ould be to conduct homomorphic encryption on different parts

f data independently under different keys; however, this is inef-

cient for the data owner and goes against the intuition of fine-

rained access control. (2) Differentiating data access authorization

reates a more stringent bond between the requesters’ access pro-

ess and the data, resulting in severe access information disclosure

hreats. Access control with oblivious transfer (AC-OT) technique

 Camenisch et al., 2009; Han et al., 2015) allows authorized re-

uesters to obtain the content of interest without exposing their

ccess information. However, the database is considered trusted in

he above schemes with the plaintext data stored directly. Since

he cloud is outside the data owners’ trust domain, it would be

nappropriate to employ AC-OT in a cloud-based data sharing sce-

ario directly. Hence, it is also necessary to investigate how to pro-

ect the requesters’ access histories from being known by the data

wner and the cloud in cloud-based media data sharing.

.1. Main contributions

Aiming at addressing the above challenges, a secure data shar-

ng scheme for cloud settings is designed in this paper. The main

ontributions of this paper are as follows:

(1) A new cryptographic primitive, named type-based flexible

roxy re-encryption with oblivious transfer (TFPRE-OT), is pro-

osed and constructed in this paper based on the concept of type-

ased proxy re-encryption (TPRE) (Tang, 2008). Compared with the

urrent TPRE schemes, we make vital improvements in the follow-

ng two aspects:

• We generate a lightweight one-time type key for each type

of data. By utilizing the type keys, only one re-encryption key

and a one-time re-encryption process are needed to grant a re-

quester multiple data types. As a result, the total computation

and communication overheads are reduced.

• We transmit the type keys to the requester’s side through an

efficient oblivious transfer protocol (Chu and Tzeng, 2008). The

advantage is that the data owner cannot learn which type keys

the requester has obtained, and thus cannot infer what data the

requester has accessed.

(2) Furthermore, by jointly exploiting TFPRE-OT and watermark-

ng technology, we propose a secure data sharing scheme with

ifferential access control and privacy preservation. Inspired by

he critical insights of Zhang et al. (2018) , the proposed TFPRE-OT

aintains the encryption algorithm’s homomorphism to embrace

he operations required by watermarking. The novelty of our pro-

osal is briefly summarized and illustrated in Table 1 .

(3) We theoretically analyze the security and performance of

he proposed TFPRE-OT protocol and evaluate its computational

osts. The results show that our proposal achieves the desired se-

urity goals and attains superior performance.

As a comprehensive security scheme, our proposal relieves the

otential conflicts of different security requirements to benefit the

ata owners and the requesters simultaneously.

.2. Organization

The remainder of this paper is organized as follows.

ection 2 gives the notations and the preliminaries. In Section 3 ,

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Table 1

Functionality Comparison with Related Schemes.

Schemes

Fine-grained

sharing

Access

history

hiding

Traitor

tracking

INFOCOM2015

Shao et al. (2015)

� × ×

TIFS2017

Shen et al. (2017)

× � ×

JNCA2018

Li et al. (2018)

� × �

JISA2019

Liu et al. (2019)

� × ×

TDSC2019

Zhang et al. (2018)

× × �

TCC2019

Chaudhari and

Das (2019)

� � ×

TII2020

Huang et al. (2020)

× × �

Ours � � �

t

S

p

d

t

F

S

2

s

l

2

o

f

(

(

(

2

t

c

a

s

a

i

i

p(
c

i

b

b

i

Table 2

Notations and Description.

Notation Description

G 1 , G 2 multiplicative

cyclic groups

p a large prime

g a generator of

group G 1
e pairing:

G 1 × G 1 → G 2
Z ∗p prime field

with nonzero

elements

M a large media

data set

m i a certain type

data in M

T the set of type

values

t i a certain type

value in T

{ σ 1 , σ 2 , σ k } indexes of the

k types of data

H 0 , H 1 , H 2 cryptographic

hash functions

α, β , r, r 1 , r 2 , z,

a j , x

elements in Z ∗p

(pk DO , sk DO) a key pair of

the DO

(pk U , sk U) a key pair of

the requester

T K a type keys set

W =

{ w 1 , w 2 , w l }
the vector of a

watermark

X W data X with

watermark W

φDO , φU signatures of

the DO and

the requester

�, l DO , l U , b binary

sequences

rk DO → U a re-encryption

key

τ timestamp

b

a

a

v

2

t

c

S

s

c

T

c

A

T

2

c

R

t

r

b

he system model, threat model, and design goals are presented. In

ection 4 , we present the construction of our proposed TFPRE-OT

rotocol with its security property analyzed. In Section 5 , we

escribe the proposed secure data sharing scheme. We evaluate

he performance of the proposed TFPRE-OT protocol in Section 6 .

inally, we show the related work and conclude our paper in

ection 7 and 8 , respectively.

. Preliminaries

In this section, we first show some notations used in the de-

cription of our scheme in Table 2 , and then introduce some pre-

iminaries related to this paper.

.1. Bilinear map

Let G 1 and G 2 be two multiplicative cyclic groups of large prime

rder p, and g be a generator of G 1 . A map e : G 1 × G 1 → G 2 has the

ollowing properties:

1) Computability: there exists an efficient algorithm for computing

map e .

2) Bilinearity: for all u, v ∈ G 1 and a, b ∈ Z ∗p , e
(
u a , v b

)
= e (u, v) ab .

3) Non-degeneracy: e (g, g) � = 1 .

.2. Complexity assumptions

The security of the proposed scheme in this paper is based on

he Decisional Diffie-Hellman (DDH) assumption, the 3-weak De-

isional Bilinear Diffie-Hellman Inversion (3-wDBDHI) assumption,

nd the Chosen-Target Computational Diffie-Hellman (CT-CDH) as-

umption.

(1) DDH problem (ElGamal, 1985) : Given

(
g, g a , g b , g c

)
for some

, b, c ∈ Z ∗p and g is a generator of G 1 , decide whether g ab = g c . This

s equivalent to asking if e (g, g c) = e
(
g a , g b

)
. The DDH assumption

n G 1 holds if it is computationally infeasible to solve the DDH

roblem in G 1 .

(2) 3-wDBDHI problem (Libert and Vergnaud, 2011) : Given

g, g
1
a , g a , g a

2
, g b , T

)
, where

(
g, g

1
a , g a , g a

2
, g b

)
∈ G 1 and T ∈ G 2 , de-

ide whether T = e (g, g)
b

a 2 . The 3-wDBDHI assumption holds if it

s computationally infeasible to solve the 3-wDBDHI problem.

(3) CT-CDH problem (Chu and Tzeng, 2008) : Let H : { 0 , 1 } ∗ → G 1

e a cryptographic hash function, x be a random value in Z ∗p , T G (·)
e the target oracle that returns a random element w i ∈ G 1 at the

 th query, H (·) be the helper oracle that returns (·) x , and q , q
G T H

3
e the number of queries to the target oracle and the helper or-

cle, respectively. Given an input (p, g, g x , H) , the probability that

dversary A outputs k pairs ((v 1 , j 1) , (v 2 , j 2) , ..., (v k , j k)) , where

 i =

(
w

x
j i

)
for i ∈ { 1 , 2 , ..., k } , q H < k ≤ q T , is negligible.

.3. Oblivious transfer

There are two entities involved in an oblivious transfer pro-

ocol: the sender S who has some secret messages, and the re-

eiver R who wants to access some of them. By interacting with

 via an oblivious transfer protocol, R can obtain the secret mes-

ages he selects without divulging his choices to S. Moreover, R

annot learn the information of other secret messages. Chu and

zeng (2008) propose an efficient k out of n OT (OT k n) proto-

ol, where R can obtain k secret messages obliviously at a time.

s illustrated in Fig. 2 , we review the OT k n protocol in Chu and

zeng (2008) briefly.

.4. Type-based proxy re-encryption

Aiming at solving the problem that traditional PRE schemes

annot implement fine-grained access control, Type-based Proxy

e-Encryption (TPRE) is proposed in Tang (2008) . In TPRE-schemes,

he data owner can selectively empower decryption rights to the

equesters by generating different re-encryption keys. Let data M

e divided into n different types, namely, M = { m , m , ..., m n } .
1 2

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Fig. 2. A brief review of the OT protocol in Chu and Tzeng (2008) .

Fig. 3. The system model.

I

t

r

q

m

o

t

T

2

q

L

{
q

r

e

E

3

m

3

t

c

t

p

e

t

d

d

f

c

i

o

t

b

b

c

r

t

r

t

W

r

c

i

m

o

t

a

3

t

n

l

m

a

f a requester wants to access a certain type data m i (1 ≤ i ≤ n) ,

he data owner needs to generate a re-encryption key rk i cor-

esponding to type i to grant the decryption rights to the re-

uester. If the type of re-encryption key and the ciphertext mis-

atch, the re-encryption algorithm will output random values. In

ther words, the requester can only decrypt m i from the cipher-

exts re-encrypted by rk i . For more details, please kindly refer to

ang (2008) , Pareek and Purushothama (2020) .

.5. Watermark embedding in encrypted domain

Embedding a watermark in the encrypted domain virtually re-

uires the homomorphic property of the encryption algorithm.

et W = { w 1 , w 2 , ..., w l } be a vector of a watermark, and X =

x 1 , x 2 , ..., x q } be a feature vector of the image object X , where

 ≥ l. If E K (·) is a multiplicative homomorphic encryption algo-

ithm, where K is the public key, then the process of watermarking

mbedding in the encrypted domain can be described as:

 K (X

W) = E K (X) · E K (W)

= E K (x 1) · E K (w 1) , E K (x 2) · E K (w 2) , ..., (1)

E K (x l) · E K (w l) , ..., E K (x q) .

. Problem statement

In this section, we introduce the system, outline the threat

odel and formalize our design goals.

.1. System model

There are five entities involved in our system model: the cloud,

he data owner (DO), the requesters, the watermark generation

enter (WGC), and the judge, as shown in Fig. 3 .
4
Cloud : The cloud provides storage and computing services to

he DO. It stores the encrypted media data and acts as a proxy to

erform the re-encryption algorithm. In addition, it is required to

mbed the watermark into the shared data.

DO : The DO possesses a large amount of media data and in-

ends to purchase services from the cloud to store and share its

ata.

Requesters : These are data consumers who can access the me-

ia data once authorized and delegated the decryption rights. Dif-

erent authorized requesters can access different types of data ac-

ording to their access rights.

WGC : The WGC is a trusted agent. It is responsible for generat-

ng watermarks for the DO and the requesters.

Judge : The judge is an arbitral body. When a data leakage event

ccurs, the DO submits evidence to the judge and applies for arbi-

ration. The judge then determines who should assume responsi-

ility for the data breach.

In our scheme, the data outsourced to the cloud is encrypted

y the DO to ensure data confidentiality. Neither attackers nor the

loud can learn any information about the data without autho-

ization. When an authorized requester initiates an access request,

he DO first generates type keys for the requester according to his

ights. Differential type keys are then transmitted to the requester

hrough an oblivious transfer protocol. To realize traitor tracing, the

GC will generate a digital watermark traceable to the DO and the

equester, which will subsequently be encrypted and sent to the

loud. After that, the cloud will embed the encrypted watermark

mperceptibly in the shared media data and re-encrypt the water-

arked data. Finally, the requester can decrypt the data using the

btained type keys and his private key. When a data breach occurs,

he DO can apply to the judge for arbitration to pursue account-

bility for the traitors under the law.

.2. Threat model

Given the above system framework, the following possible

hreats are considered in our design.

• Following most existing cloud-based works (Ge et al., 2019; Pe-

ter et al., 2013; Shao et al., 2015; Yu et al., 2010; Zhang et al.,

2018), we suppose in our design that the cloud is honest-but-

curious; this means it will faithfully perform the designated

protocol but could launch passive attacks to access the original

media data and the re-encrypted data. In practice, cloud ser-

vices providers are usually well-established and business-driven

parties who have little incentive to modify the communication

data in the protocol, given the potential legal repercussions and

damage to their reputation (Peter et al., 2013). Meanwhile, for

business interests, cloud services providers have sufficient mo-

tivation to prevent cloud servers from being compromised by

external adversaries.

• The second source of threats in our design is that the requesters

may try to access the shared data for which they have no au-

thorization, or illegally redistribute their accessed data to oth-

ers. Both of these types of misbehaviors will damage the DO’s

commercial interests.

• The third source of threats is that the curious DO may man-

age to learn the content of the requesters’ access profiles when

passing media data to them. Such disclosure of access content

will violate authorized requesters’ privacy.

We note that some solutions use verifiable computation tech-

iques (Costello et al., 2015; Yu et al., 2017) to combat the ma-

icious cloud, which may provide feasible protection for water-

ark modification. Moreover, we assume that there is no collusion

mong different parties and that the communication channels in

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

t

i

i

d

t

t

c

3

p

t

(

n

i

b

d

a

b

c

w

o

4

t

t

t

e

t

fl

g

t

d

i

t

p

f

q

I

e

M

o

i

t

4

s

s

{
n

r

a

t

k

D

s

b

n

e

σ
d

v

a{
e

p

n

t

c

I

a

q

p

t

4

b

A
J

s

o

p

(

l

(

(

he protocol are protected against possible replay attacks by exist-

ng methods, such as SSL (Wagner et al., 1996). Given that the very

ntention of this proposal is for differential control on behalf of the

ata owners and the privacy for the requesters, we state that fur-

her orthogonal efforts could be integrated for a more robust sys-

em, while the general issues are out of the scope of our focused

ontext.

.3. Design goals

In view of the above threats, the main design goals of the pro-

osed scheme are as follows:

• Data Confidentiality : Both the data stored in the cloud and

he re-encrypted data should be secret to the external attackers

including the cloud).

• Differential Access Control (Terminology): Following foot-

ote 1, a protocol is said to provide differential access control if

t possesses the capabilities to control the access and validate the

ehaviours of different requesters in terms of the same piece of

ata.

The proposed data sharing scheme should allow the DO to re-

lize differential access control over the shared data.

• Access history hiding : The requesters’ access histories should

e protected. In the proposed protocol, neither the DO nor the

loud should know what data the requesters have accessed, which

ill prevent them from inferring the requester’s interests and

ther private information based on the access histories.

. Type-based flexible proxy re-encryption with oblivious

ransfer

In current TPRE schemes, when a requester accesses multiple

ypes of data, multiple re-encryption keys must be generated with

he re-encryption algorithm being executed multiple times. How-

ver, this pattern of generating one re-encryption key and running

he re-encryption algorithm once to share one type of data is in-

exible and inefficient. In addition, since the data owners need to

rant the decryption right to the requester, they must know the

ype of data accessed by the requester. Accordingly, there is no

oubt that the requester’s access content will be exposed, which

s a hazard that may lead to its privacy disclosure.

The type-based flexible proxy re-encryption with oblivious

ransfer (TFPRE-OT) is proposed in this paper to address the above

roblems. Our critical insight is to generate a lightweight type key

or each type of data, which will be delivered to authorized re-

uesters by the oblivious transfer protocol (Chu and Tzeng, 2008).

n our design, sharing multiple types of data only requires one re-

ncryption key and executing the re-encryption algorithm once.

oreover, the DO cannot ascertain which keys the requester has

btained; thus, he cannot infer the data content that the requester

s genuinely interested in.

In this section, we formalize and instantiate the proposed pro-

ocol, and then present the security analysis.

.1. Formulation of the TFPRE-OT protocol

We assume that the original data M can be divided into n

ubsets according to its types 2 , and a unique type value t i is as-

igned for each type of data, namely, M = { m 1 , m 2 , ..., m n } and T =

t 1 , t 2 , ..., t n } . We now formalize the TFPRE-OT into the following

ine algorithms:

Setup

(
1 λ

)
→ P P : this algorithm takes as input a security pa-

ameter λ and produces the system parameters P P .
2 It is a common practice to store data by type in real-world scenarios.

5
KeyGen (P P) → (pk, sk) : this algorithm is performed by the DO

nd the requesters. It takes as input the public parameters P P , and

hen generates the DO’s key pair (pk DO , sk DO) and the requester’s

ey pair (pk U , sk U) .

Enc (pk DO , M, T) → C 2 : this encryption algorithm is run by the

O. It takes as input the DO’s public key pk DO , the data M, and the

et of type values T . It then produces the ciphertext C 2 .

TKeyGen (T , z) → T K: this type key generation algorithm is run

y the DO. It takes as input the set of type values T and a random

umber z, and produces the set of type keys T K.

TKeyOT

(
T K

′
, σ

)
→ tk σ : this type key transfer algorithm is ex-

cuted by the requester and the DO. The requester first submits

= { σ 1 , σ 2 , ..., σ k } ⊆ { 1 , 2 , ..., n } , which denotes the indexes of the

ata he is interested in within his access rights. Next, the DO pro-

ides T K

′ ⊆ T K, the type keys of the data within the requester’s

uthority. Then, the requester obtains the expected type keys tk σ =

tk σ 1
, tk σ 2

, ..., tk σ k

}
.

ReKeyGen (sk DO , pk U , z) → rk DO → U : this re-encryption key gen-

ration algorithm is executed by the DO. It takes as input the DO’s

rivate key sk DO , the requester’s public key pk U , and the random

umber z, and generates the re-encryption key rk DO → U .

ReEnc (rk DO → U , C 2) → C 1 : this re-encryption algorithm is run by

he cloud. It takes as input the re-encryption key rk DO → U and the

iphertext C 2 , and produces the re-encrypted ciphertext C 1 .

Dec 2 (sk DO , C 2 , T) → M: this algorithm is performed by the DO.

t takes as input the DO’s private key sk DO and the ciphertext C 2 ,

nd then produces the data M.

Dec 1 (sk U , C 1 , tk σ) → m σ : this algorithm is performed by the re-

uester. It takes as input the requester’s private key sk U , the ci-

hertext C 1 , and the type keys tk σ . It then outputs the data that

he requester is interested in, i.e., m σ =

{
m σ 1

, m σ 2
, ..., m σ k

}
.

.2. Formal security definitions

To formalize the security model, we demonstrate two games

etween a challenger C and an adversary A to show how

 is against the security of a TFPRE-OT scheme, inspired by

ia et al. (2010) , Seo et al. (2013) , Ibraimi et al. (2008) . These two

ecurity games respectively describe the indistinguishability of the

riginal ciphertext and the re-encrypted ciphertext against chosen-

laintext attacks (CPA).

Game 0: The semantic security of the second level ciphertext

original ciphertext) is considered in Game 0, which works as fol-

ows:

1) Setup. C runs the Setup algorithm to obtain the public param-

eters P P , and then sends P P to A .

2) Query phase-1 : A makes the following queries to C:

• Public key generation oracle O pk : On receiving an input of

index i , C runs the KeyGen algorithm to generate key pair

(pk i , sk i) , gives pk i to A , and records (pk i , sk i) in table T k .

• Secret key generation oracle O sk : On receiving an input of

pk i from A , where pk i is from O pk , if pk i is corrupted, C
searches pk i in T k and returns sk i ; otherwise C returns ⊥ .

• TKey generation oracle O tk : On receiving an input of t σ from

A , C runs the TKeyGen algorithm and returns tk σ , where

tk σ is the type key corresponding to t σ .

• Re-encryption key generation oracle O rk : On receiving an in-

put of
(

pk i , pk j
)

from A , where pk i and pk j are from O pk , C
returns rk i → j ← ReKeyGen

(
sk i , pk j , z

)
, wher e sk i is the se-

cret key corresponding to pk i and x is a random number

from Z ∗q .
• Encryption oracle O enc : On receiving an input of (pk i , m, t i) ,

where pk i is from O pk , C runs the Enc algorithm to generate

the original ciphertext C and gives C to A .
2 2

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

(

(

(

fi

t

D

o

O

n

(

t

p

a

C

l

fi

t

D

l

O

n

p

D

r

s

C

4

e

o

w

t

r

d

t

(

(

(

(

(

(

(

(

(

4

T

T

a

c

P

l

m

• Re-encryption oracle O re : On receiving an input of (
pk i , pk j , C 2

)
from A , where pk i and pk j are from O pk , C

runs the ReEnc algorithm to generate the re-encrypted ci-

phertext C 1 and gives C 1 to A .

3) Challenge. Once A decides that Query phase-1 is over, it out-

puts two messages of equal length m 0 and m 1 , a message type

t ∗, and a public key pk ∗. C randomly picks b ∈ { 0 , 1 } and sets

C ∗ = Enc

(
pk

i ∗
, m b , t

∗
)

. Then C sends C ∗ as the challenge to A .

4) Query phase-2. A adaptively issues more queries similar to

those in Query phase-1.

5) Guess. Finally, A outputs a guess b
′ ∈ { 0 , 1 } and wins Game 0 if

b = b
′
.

We refer to such an A as a TFPRE-OT-L2-CPA adversary. We de-

ne the advantage of A in winning Game 0 as the following func-

ion of the security parameter λ: Succ Game 0
A (λ) = | P r [b

′ = b
]

− 1
2 | .

efinition 1. (TFPRE-OT-L2-CPA security): We define that the sec-

nd level ciphertext (original ciphertext) of the proposed TFPROE-

T scheme is said to be TFPRE-OT-L2-CPA secure if Succ Game 0
A (λ) is

egligible for any polynomial time adversary A .

Next, we introduce Game 1, which uses the first level ciphertext

re-encrypted ciphertext) as the challenge ciphertext.

Game 1: The procedure is similar to that of Game 0 except for

he Challenge phase, so we simply list this phase below.

Challenge. Once A decides that Query phase-1 is over, it out-

uts two messages of equal length m 0 and m 1 , a type key t ∗σ ,

nd a re-encryption key rk
∗
i → j . C randomly picks b ∈ { 0 , 1 } and sets

∗ = ReEnc
(
rk

∗
i → j , Enc

(
pk

∗
, m b , t

∗)). Then C sends C ∗ as the chal-

enge to A .

We refer to such an A as a TFPRE-OT-L1-CPA adversary. We de-

ne the advantage of A in winning Game 1 as the following func-

ion of the security parameter λ: Succ Game 1
A (λ) = | P r [b

′ = b
]

− 1
2 | .

efinition 2. (TFPRE-OT-L1-CPA security): We define that the first

evel ciphertext (re-encrypted ciphertext) of the proposed TFPROE-

T scheme is said to be TFPRE-OT-L1-CPA secure, if Succ Game 1
A (λ) is

egligible for any polynomial time adversary A .

According to the above security games and definitions, we

resent the proposed scheme’s CPA security as:

efinition 3. (TFPRE-OT-CPA security): A type-based flexible proxy

e-encryption with an oblivious transfer scheme is TFPRE-OT-CPA

ecure if both the TFPRE-OT-L1-CPA security and the TFPRE-OT-L2-

PA security are achieved.

.3. Instantiation of the TFPRE-OT protocol

The proposed TFPRE-OT protocol is based on the proxy re-

ncryption scheme proposed in Ateniese et al. (2006) and the OT k n

blivious transfer protocol proposed in Chu and Tzeng (2008) . We

ill instantiate the construction of the TFPRE-OT primitive by at-

entively improving these previous designs. We suppose that the

equester is interested in k (1 ≤ k ≤ n) types of data, and the in-

ices of the data are { σ 1 , σ 2 , ..., σ k } ∈ { 1 , 2 , ..., n } . The details of

he instantiation process are as follows:

1) Setup

(
1 λ

)
→ P P . Let G 1 and G 2 be two multiplicative cyclic

groups of the same prime order q with a bilinear map e :

G 1 × G 1 → G 2 . Let g be a generator of G 1 and Z = e (g, g) . Let

H 0 : { 0 , 1 } l → Z ∗q , H 1 : { 0 , 1 } ∗ → G 1 , H 2 : G 1 → { 0 , 1 } l be three

collision-resistant hash functions. P P = (G 1 , G 2 , g, Z, H 1 , H 2 , H 0)
are public parameters.

2) KeyGen (P P) → (pk, sk) .

• The DO selects a random value α ∈ Z ∗q and generates his key

pair: (pk DO , sk DO) = (g α, α) . It keeps pk DO public and sk DO

secret.
6
• The requester generates his key pair (pk U , sk U) =

(
g β , β

)
in

the same way, keeping pk U public and sk U secret.

3) Enc (pk DO , M, T) → C 2 .

• The DO randomly selects a value r ∈ Z ∗q and computes c i, 1 =

g rα .

• For each m i ∈ M (1 ≤ i ≤ n) and related type value t i , the DO

computes c i, 2 = m i Z
rH 0 (t i) .

• Then the DO generates M’s ciphertext C 2 = (c 1 , c 2 , ..., c n) ,

where c i =

(
c i, 1 , c i, 2

)
, and sends C 2 to the cloud.

4) TKeyGen (T , z) → T K. The DO randomly picks a value z ∈ Z ∗q , and

computes tk i =

H 0 (t i)
z . It should be noted that only one z is re-

quired for each access.

5) TKeyOT (T K, σ) → tk σ .

• The requester first computes h σ j
= H 1 (σ j) and A j =

(
h σ j

)a j ,

where a j ∈ Z ∗q , j = 1 , 2 , ..., k . Then, the requester sends

{ A 1 , A 2 , ..., A k } to the DO.

• After receiving { A 1 , A 2 , ..., A k } , the DO picks a random num-

ber x ∈ Z ∗q and computes D j =

(
A j

)x
, h i = H 1 (i) , and b i =

tk i � H 2

(
h i

x
)
. Subsequently, the DO sends { D 1 , D 2 , ..., D k }

and { b 1 , b 2 , ..., b n } back to the requester.

• The requester computes K j =

(
D j

)a −1
j , after which he can ob-

tain the type keys by computing tk σ j
= b σ j

� H 2

(
K j

)
.

6) ReKeyGen (sk DO , pk U , z) → rk DO → U . The DO generates a re-

encryption key rk DO → U = (pk U)
z

sk DO = g
zβ
α and sends rk DO → U to

the cloud.

7) ReEnc (rk DO → U , C 2) → C 1 .

• For each c i ∈ C 2 , the cloud computes

c
′
i, 1

= e
(
c i, 1 , rk DO → U

)
= e

(
g rα, g

zβ
α

)
= Z zrβ ,

c
′
i, 2

= c i, 2 , and c
′
i
=

(
c
′
i, 1

, c
′
i, 2

)
.

• The cloud generates re-encrypted ciphertext C 1 = (
c
′
1
, c

′
2
, ..., c

′
n

)
.

8) Dec 2 (sk DO , C 2 , T) → M.

• For each c i ∈ C 2 , the DO first computes

v i = e

(

c i, 1 , g

H 0 (t i)
sk DO

)

= Z rH 0 (t i) .

• The DO then obtains m i by computing m i =

c i, 2
v .

9) Dec 1
(
sk U , C 1 , tk σ j

)
→ m σ j

.

• The requester selects the ciphertext with the index σ j and

computes v ′ σ j
=

(
c
′
σ j , 1

) tk σ j
sk U = Z

rH 0

(
t σ j

)
.

• The requester can then obtain the intended data by comput-

ing m σ j
=

c
′
σ j , 2

v ′ σ j

.

.4. Security analysis

In this section, we present the security analysis of the proposed

FPRE-OT.

heorem 1. (Correctness): If the ciphertext generated by the DO or

n honest proxy is well-formed, every level of ciphertext should be

orrectly decrypted.

roof. Suppose the ciphertext of type is t i , the correctness of first

evel ciphertext C 1 can be proved using Eq. (2) .

′
i =

c
′
i, 2 (

c
′
i, 1

) tk i
sk U

=

m i Z
rH 0 (t i) (

Z zr 1 β
) H 0 (t i)

zβ

= m i . (2)

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

s

m

p

T

s

d

P

p

d

r

s

T

o

P

o

D

a

t

i

D

(

S

t

t

c

i

T

5

s

t

5

i

s

m

d

t

t

e

t

n

t

e

t

w

p

w

i

Fig. 4. The process of type keys generation and transmission.

5

s

q

p

g

g

o

b

w

d

s

D

t

q

a

o

s

u

w

s

b

M

t

i

s

D

a

q

d

t

t

r

t

w

Similarly, the second level ciphertext C 2 ’s correctness is pre-

ented as Eq. (3) .

′
i =

c i, 2

e

(
c i, 1 , g

H 0 (t i)
sk DO

) =

m i Z
rH 0 (t i)

e

(
g rα, g

H 0 (t i)
α

) = m i . (3)

Accordingly, the TFPRE-OT protocol’s correctness can be

roved. �

heorem 2. (TFPRE-OT-CPA security):Our proposal is TFPRE-OT-CPA-

ecure based on the DDH and the 3-wDBDHI assumptions in the stan-

ard model.

roof. According to Definition 3, Theorem 2 can be obtained by

roving the security of the first- and second- level ciphertexts. Un-

er the 3-wDBDHI assumption and the DDH assumption, the secu-

ity of these ciphertexts are respectively assured. We prove them

eparately in Appendix A by Lemma 1 and Lemma 2 . � �

heorem 3. Our scheme can ensure the DO’s security in the random

racle model under the assumption that the CT-CDH problem is hard.

roof. Before proving this theorem, we first present the definition

f the DO’s security. �

efinition 4. (DO’s security): We say that a DO is secure, if, for

ny curious authorized requester, he cannot obtain the type keys

hat are not within the scope of his rights.

In the ideal model defined in Chu and Tzeng (2008) for execut-

ng the oblivious transfer protocol, all type keys generated by the

O and the requesters’ choices are sent to a trusted third party

TTP). The TTP then sends the chosen type keys to the requesters.

upposing that a curious requester U can crack the DO’s security,

here exists a simulator S who can solve the CT-CDH problem in

he ideal model. Since this contradicts the CT-CDH assumption, we

an obtain Theorem 3 . A brief proof of Theorem 3 is provided

n Appendix B. For more details, please kindly refer to Chu and

zeng (2008) .

. The proposed data sharing scheme

In this section, we first provide an overview of the proposed

cheme and its central idea. Then we analyze the scheme with a

horough discussion.

.1. Overview

Based on the TFPRE-OT protocol, we propose a secure data shar-

ng scheme in which the data is divided into multiple types for

toring and sharing. In fact, classifying data in this way is com-

on practices in real-world scenarios. In our scheme, each type of

ata is encrypted under its type value before being uploaded to

he cloud. When an authorized requester initiates access requests

o the DO, he generates several one-time type keys and a re-

ncryption key. The type keys are then transmitted to the requester

hrough the oblivious transfer protocol (Chu and Tzeng, 2008). Fi-

ally, the cloud re-encrypts the ciphertext to delegate the decryp-

ion rights to the authorized requester. The DO implements differ-

ntial access control throughout the process by providing differen-

ial type keys to different requesters and letting the cloud embed

atermarks in the encrypted data. Moreover, the oblivious transfer

rotocol (Chu and Tzeng, 2008) can prevent the DO from inferring

hich data the requester can obtain; thus, the requesters’ privacy

s preserved.
7
.2. Detailed data sharing process

The proposed data sharing scheme consists of the following

tages:

(1) System Setup : Given a security parameter λ, the DO, the re-

uester u , and the WGC run KeyGen (P P) to generate respective key

airs (pk DO , sk DO) , (pk U , sk U) , and (pk W

, sk W

) . Besides, the cloud

enerates its key pair (pk C , sk C) for the asymmetric encryption al-

orithm RSA. The WGC randomly generates a binary sequence k w

f length N as a secret watermarking key with l bits of 1 and N − l

its of 0. Here, N is the length of the image object’s feature vector,

hile l is the length of the watermark.

(2) Data Uploading : We simply suppose the media data can be

ivided into n types M = { m 1 , m 2 , ..., m n } , and each data type is as-

igned a unique type value T = { t 1 , t 2 , ..., t n } , where t i ∈ { 0 , 1 } l . The

O runs Enc (pk DO , M, T) to generate the encrypted data C 2 and

hen transmits all ciphertexts to the cloud.

(3) Type Keys Generation and Transmission : When the re-

uester initiates an access request, the DO generates the type keys

ccording to u ’s access rights and then transmits the type keys to u

bliviously. As shown in Fig. 4 , this phase consists of the following

teps:

• Let the data that u can access be M

′ ⊆ M, and the type val-

es set corresponding to M

′
is T

′ ⊆ T . The DO runs TKeyGen

(
T

′
, z

)
ith inputs T

′
and a random value z ∈ Z ∗q to generate the type key

et T K.

• Suppose the indices of the data types that u is interested in

e σ = { σ 1 , σ 2 , ..., σ k } ⊆ { 1 , 2 , ..., n } (where
{

m σ 1
, m σ 2

, ..., m σ k

}
⊆

′
).

• u and the DO execute TKeyOT (T K, σ) jointly to transfer the

ype keys tk to u , where tk =

{
tk σ 1

, tk σ 2
, tk σ k

}
.

(4) Re-encryption Key and Watermark Generation : As shown

n Fig. 5 , this phase consists of the following steps:

• Once the requester u receives tk , the DO and u generate a

ignature for this sharing event individually. The signature of the

O is φDO = Sign (ID DO , ID U , l DO , T , τ) . Here, Sign (·) is a signature

lgorithm; ID DO and ID U are the identities of the DO and the re-

uester u , respectively; l DO is a binary sequence randomly pro-

uced by the DO; and τ is a timestamp. The requester u ’s signa-

ure is φU = Sign (ID DO , ID U , τ) . They then send the signatures to

he WGC. Finally, the DO stores l DO to a set L DO .

• Upon receiving the signatures, the WGC first verifies the cor-

ectness of these signatures. If both the signatures are verified,

he WGC generates a fingerprint b = � ‖ (l DO � l U) with length l,

here l is a binary sequence randomly produced by the WGC
U

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Fig. 5. The process of re-encryption key and watermark generation.

f

f

m

g

1

t

G

(

i

k

e

m

t

T

E

A

w{
W

n

a

W

r

a

c

w

m

i

t

t

c

v

m

X

t

w

v

V

a

q

i

l

c

c

p

t

s

a

5

s

5

c

r

c

d

g

s

a

a

5

r

r

g

q

H

i

t

b

a

p

t

e

b

g

m

d

t

5

d

r

r

i

t

t

o

l

a

a

or u , and � is a unique random string chosen by the WGC

or every data-sharing event. The WGC then generates a water-

ark V = (v 1 , v 2 , ..., v l) by utilizing the watermar k generation al-

orithm in Zhang et al. (2018) . This can be formulated as v i =
 + ω · k 1 · (2 b i − 1) (1 ≤ i ≤ l) , where ω is a public parameter used

o control the strength of the embedding and k 1 is a standard

aussian distributed spreading sequence. Finally, the WGC stores

�, k 1 , l U , ID U) to a set L WGC .

• The DO generates the re-encryption key rk DO → U for u by call-

ng ReKeyGen (sk DO , pk U , z) under his private key sk DO , u ’s public

ey pk U , and the random value z.

(5) Watermark Embedding and Re-encryption : Watermark

mbedding in the encrypted domain requires multiplicative ho-

omorphism of ciphertext, as mentioned in Section 2 . We note

hat this can be achieved based on the second-level ciphertext in

FPRE-OT, i.e.,

nc (pk DO , m 1 , T) · Enc (pk DO , m 2 , T)

=

(
g r 1 α, m 1 Z

r 1 H 0 (t)
)

·
(
g r 2 α, m 2 Z

r 2 H 0 (t)
)

=

(
g (r 1 + r 2) α, m 1 m 2 Z

(r 1 + r 2) H 0 (t)) (4)

= Enc (pk DO , m 1 m 2 , T)

s shown in Fig. 6 , this phase consists of the following steps:

• The WGC determines the coefficients that the watermark

ould be embedded in using W = { w 1 , w 2 , ..., w N } , where w j =

v i if k
j
w

= 1

1 if k
j
w

= 0
, 1 ≤ i ≤ l, 1 ≤ j ≤ N. Note that the effective length of

 is actually l (other n − 1 elements are all ones).

• The WGC prepares the encrypted watermark C W

by run-

ing Enc (pk DO , W, T) , given the DO’s public key pk DO , the set W ,

nd each type value in T , where C W

=

(
c w 1

, c w 2
, ..., c w N

)
. Then, the

GC sends C W

to the cloud. Concurrently, the DO encrypts the

k DO → U by calling RSA (pk C , rk DO → U) under the cloud’s public key

nd sends the encrypted re-encryption key to the cloud.

• After receiving the encrypted re-encryption key, the cloud de-

rypts it using the private key sk C . It then embeds the encrypted

atermark in all media data to produce the encrypted and water-

arked data by computing C W

2 = C 2 · C W

.

• The cloud prepares the first level ciphertext C W

1 for u by call-

ng ReEnc
(
rk DO → U , C

W

2

)
under the re-encryption key rk DO → U .

(6) Data Acquire : As shown in Fig. 6 , the requester downloads

he encrypted and watermarked data C W

1 from the cloud. He can

hen obtain multiple types of watermarked data m

W

σ j

(
σ j ∈ σ

)
by

alling the decryption algorithm Dec 1
(
sk U , C

W

1
, tk

)
under his pri-

ate key sk U .

(7) Illegal Divulger Identification : Upon detecting a suspicious

edia copy X
′
, the DO submits it, together with the raw data

and L DO to the trusted agent judge for arbitration. Meanwhile,

he judge requires the WGC to provide k w

, and then extracts the

atermark V
′

from the suspicious copy X
′

by performing the re-
8
erse operation x
′
i
/ x i . Subsequently, the judge can recover b

′
from

′
by computing b

′
i
=

v ′
i
−1

2 ωk 1
+

1
2 . As noted above, b

′
can be parsed

s b
′ = �

′ ‖ x . The judge then obtains l U = l DO � x . He further re-

uests the WGC to reveal L WGC to him and queries whether �
′

is

n L WGC . If �
′

is in L WGC , the judge produces another identifier l
′
U

. If

′
U

= l U , the judge will deem U to be guilty. Notably, only the judge

ould hold the above information simultaneously and extract the

orrect watermark when the DO initiates an arbitration request.

Moreover, since neither the DO nor the requester knows finger-

rint b, they cannot forge the watermark. It should be noted that

he focal point of this work is not to design a novel watermarking

cheme but to uniquely bridge together fine-grained access control

nd watermarking for secure media sharing.

.3. Scheme discussion

In this part, we provide a discussion on our data sharing

cheme in terms of the threat model and the design goals.

.3.1. Data confidentiality

Since the data sharing scheme is based on the TFPRE-OT proto-

ol, its data confidentiality can be obtained by assessing the secu-

ity of TFPRE-OT. The data stored in the cloud is the second-level of

iphertexts generated by the Enc algorithm, and the re-encrypted

ata shared to authorized requesters is the first-level ciphertexts

enerated by the ReEnc algorithm. According to Theorem 2 , the

ecurity of these ciphertexts can be assured. Hence, the external

ttackers and the cloud cannot get any information from the first-

nd second-level ciphertexts.

.3.2. Differential access control

In our scheme, differential access control has the following two

equirements:

Fine-grained access control : The proposed scheme utilizes one

e-encryption key rk DO → U and multiple one-time type keys T K

′
to

rant decryption rights to the requesters. The types of data a re-

uester can decrypt are determined by the T K

′
he has obtained.

ence, the DO can achieve fine-grained access control by provid-

ng differential T K

′
to the requesters. Furthermore, compared with

raditional TPRE schemes, our scheme is more flexible and efficient,

ecause only one re-encryption key is required for a requester to

ccess multiple types of data, with the re-encryption algorithm

erformed once.

Traitor tracing : Like other watermark embedding algorithms in

he encrypted domain, we exploit the homomorphism of Enc (·) to
mbed a watermark in the shared data. The watermark generated

y the WGC is associated with a fingerprint b. If a requester ille-

ally distributes some data, the judge can extract a unique water-

ark from the leaked media copy to recover b, after which he can

etermine the requester’s identity from b and accordingly identify

he illegal leaker.

.3.3. Access history hiding

In our data sharing scheme, the requesters freely choose the in-

ices for the data types they want to access within their access

ights. Then they send their choices to the DO and obtain the cor-

esponding type keys in T K

′
via oblivious transfer. It is worth not-

ng that the requesters’ choices are unconditionally secure under

he oblivious transfer protocol, according to Chu and Tzeng (2008) ;

his means that the requesters can get the type keys in T K

′
with-

ut revealing their choices to the DO. As a result, the DO cannot

earn which type keys have been obtained by the requesters, and

ccordingly, cannot infer the data that the requesters can decrypt

nd access. Thus, the requesters’ access histories can be protected.

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Fig. 6. The process of watermark embedding and re-encryption and data acquire.

Table 3

Comparison of TFPRE-OT and traditional TPRE schemes.

Scheme

The number of

re-encryption

keys

The times of

re-encryption

Traditional

schemes

(Ibraimi et al.,

2008; Seo

et al., 2013)

O (k) O (k)

TFPRE-OT O (1) O (1)

U

t

t

6

T

a

6

6

(

F

c

a

p

i

c

o

a

e

e

t

t

w

t

p

F

n

s

d

t

t

i

t

I

a

p

c

t

p

o

t

H

c

d

c

d

t

b

a

m

6

c

s

t

p

i

o

a

h

d

c

t

c

r

t

c

a

a

t

nlike (Chu and Tzeng, 2008), we transmit the type keys rather

han the data via oblivious transfer protocol, making it suitable for

he cloud-based data sharing scenarios.

. Evaluation

In this section, we evaluate the performance of the proposed

FPRE-OT protocol and the data sharing scheme with quantitative

nalysis and experiments.

.1. Cost analysis

.1.1. Overheads of TFPRE-OT

We first present a comparative analysis of TPRE schemes

 Ibraimi et al., 2008; Seo et al., 2013) and the proposed TFPRE-OT.

or this, we define the following symbols to represent the time-

onsuming operations: E G and M G denote one modular exponenti-

tion and multiplication operation in G , respectively; P denotes one

airing operation; n represents the total number of data types; x

s the number of data types that the requesters are allowed to ac-

ess; k is the number of data types accessed by one requester at

ne time (k ≤ x) ; | C | is the size of the re-encrypted ciphertext for

ll types of data, and | q | is the size of an element in G 1 .

In Table 3 , we present a comparison of the number of re-

ncryption keys generated and the number of times the re-

ncryption algorithm is performed when a requester accesses k

ypes of data. As shown, the costs for re-encryption in therms of

hese two cndicators are O (k) for the traditional TPRE schemes,

hile are reduced to O (1) in TFPRE-OT. As a result, the computa-

ion and communication overheads can be reduced.

Computation Overheads. As shown in Table 4 , we further com-

are the number of time-consuming operations in different phases.

or TFPRE-OT, the computation overheads of Enc and Dec 2 are

(
E G 1 + E G 2 + M G 2

)
and n

(
P + E G 1 + M G 2

)
, respectively, which are
9
imilar to other schemes. When a requester accesses k types of

ata at one time, our scheme would introduce additional computa-

ion overhead, i.e., (x + 3 k) E G 2 , in phase TkeyOT . Since there is no

ype keys transfer process, the computation overhead of this phase

n traditional TPRE schemes is zero. In our scheme, the computa-

ion overheads of ReKeyGen and ReEnc are E G 1 and P , respectively.

n contrast, the computation overheads of ReKeyGen and ReEnc

re linearly related to k in the other schemes. Finally, the com-

utation overhead of Dec 1 is k
(
E G 2 + M G 2

)
for our proposal. We

an thus easily conclude that, although our protocol introduces ex-

ra computation overhead in phase TkeyOT , it still shows superior

erformance with the increase of k .

Communication Overheads. When a requester access k types

f data, he must download the re-encrypted ciphertext k times in

raditional TPRE schemes (Ibraimi et al., 2008; Seo et al., 2013).

ence, their schemes’ communication overheads are k | C | bits. In

ontrast, the communication overheads in TFPRE-OT are indepen-

ent of k . Thus, no matter how many types of data a requester ac-

esses, the resulting communication overheads are | C | bits. Besides,

ue to the implementation of oblivious transfer, there will be addi-

ional communication overheads in TkeyOT , which are (x + 2 k) | q |
its. As a general rule, | C |
 (x + 2 k) | q | . Hence, when a requester

ccess multiple types of data, our protocol would incur less com-

unication overheads.

.1.2. Overheads of the data sharing scheme

We then present an analysis of each entity’s computation and

ommunication overheads at different stages of our data sharing

cheme. For this, we define some new symbols to represent the

ime-consuming operations. Wherein, S denotes the operation of

erforming a signature algorithm, V S denotes the operation of ver-

fying a signature, HM denotes one homomorphic multiplication

peration, and | e | is the size of an element in W . In addition, we

ssume the expansion rate caused by encryption is r.

Computation Overheads. As shown in Table 5 , the tasks with

igh computation overheads for the DO and the requesters are all

one offline. For example, the encryption of original data is exe-

uted offline at the Data Upload stage, and the decryption of wa-

ermarked data is conducted offline at the Data Acquire stage (the

omputation overheads are n
(
E G 1 + E G 2 + M G 2

)
and k

(
E G 2 + M G 2

)
,

espectively). In particular, the DO and the requesters have rela-

ively small online computation overheads. For the WGC, the en-

ryption of watermarks is performed online at the Re-encryption

nd Watermark Embedding stage, whose computation overheads

re nl
(
E G 1 + E G 2 + M G 2

)
. Besides, the tasks with high computa-

ion overheads are offloaded to the cloud. For example, the re-

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Table 4

Comparison of Computation Overheads at Different Phases of TFPRE-OT.

TCS2013 (Seo et al., 2013)

VLDB2008 (Ibraimi et al.,

2008) Ours

Enc

n (P + 2 E G 1 + E G 2 + M G 2 + M G 1)

n (P + E G 1 + E G 2 + M G 2) n (E G 1 + E G 2 + M G 2)

Dec2 n (P + E G 2 + M G 2) n (P + E G 2 + M G 2) n (P + E G 1 + M G 2)

TkeyOT - - (x + 3 k) E G 2
ReKeyGen kE G 1

k (P + 2 E G 1 + E G 2 + M G 2 + M G 1)

1 E G 1

Re-Enc nk (3 E G 1 + E G 2 + M G 1) nk (P + M G 2) nP

Dec1 k (P + E G 2 + M G 2) k (2 P + 2 M G 2) k (E G 2 + M G 2)

Table 5

Computation Costs of Different Entities at Each Stage of Our Data Sharing Scheme.

DO Requester WGC Cloud

Offline System Setup 1 E G 1 1 E G 1 1 E G 1 -

Data Uploading

n (E G 1 + E G 2 + M G 2)

- - -

Online TKey Gen and

Tran

(x + k) E G 1 2 kE G 1 - -

ReKeyGen and

WatGen

1 (E G 1 + S) 1 S 2 V S -

ReEnc and

WatEmb

- -

nl (E G 1 + E G 2 + M G 2)

nP + nlHM

Offline Data Acquire - k (E G 2 + M G 2) - -

Table 6

The Comparison of Computation Overhead with Other Data Sahring. Schemes

TDSC2019 (Zhang et al.,

2018) JISA2019 (Liu et al., 2019) Ours

System Setup (3 + u) E G 1 2 E G 1 (3 + u) E G 1
Data Upload u (E G 1 + E G 2 + M G 2) P + E G 2 + (c + u) E G 1 + uM G 1 u (E G 1 + 2 E G 2 + M G 2)

TKeyGen and

Tran

- - u (x + k) E G 1 + 2 kuE G 1

ReKeyGen and

WatGen

u (E G 1 + 2 S + 2 v S) P + E G 2 + (c + 2) M G 2 +

(c + 3) E G 1

u (E G 1 + 2 S + 2 v S)

ReEnc and

WatEmb

uP +

ul (E G 1 + E G 2 + M G 2 + HM)

3 P + uM G 1 + c (M G 2 + E G 2) uP +

ul (E G 1 + E G 2 + M G 2 + HM)

Data Acquire u (E G 2 + M G 2) 3 P + uM G 1 + 3 M G 2 + E G 1 u (E G 2 + M G 2)

e

t

c

o

(

a

d

q

a

2

t

I

a

q

L

q

a

i

c

a

n

b

t

b

c

k

h

t

6

s

T

D

w

d

I

b

d

i

t

t

t

6

R

ncryption of the media data and the watermark embedding in

he encrypted domain are implemented online by the cloud, whose

omputation overheads are nP + nlHM.

Compared with the other cloud-based data sharing schemes,

ur work is equally efficient. Although ABE-based schemes

 Chaudhari and Das, 2019; Li et al., 2018; Shao et al., 2015) can

chieve flexible and fine-grained access control, the DO needs to

ownload, decrypt, and re-encrypt data when access policies fre-

uently change. In this respect, PRE-based schemes could be more

dvantageous in terms of computation overheads (Zhang et al.,

018). We therefore only compare the computation overheads with

he PRE-based cloud data sharing schemes, as shown in Table 6 .

n Liu et al. (2019) , a single DO can share its encrypted data with

 group of requesters. Suppose u denotes the number of the re-

uesters. There is no doubt that the computation overheads of

iu et al. (2019) are lower when sharing data with a group of re-

uesters. However, when u = 1 , our scheme is more efficient. We

lso highlight that (Liu et al., 2019) cannot achieve traitor trac-

ng. On the other hand, given the same size of media data, the

omputation overheads of Zhang et al. (2018) are almost the same

s ours. Nevertheless, the sharing modal of Zhang et al. (2018) is

ot fine-grained. Our scheme achieve fine-grained access control

y generating and transmitting the type keys. The total computa-

ion overheads of this phase are (x + 3 k) E G 1 , which is believed to

e acceptable in practice.

p

f

10
Communication Overheads. For the DO and the requester, the

ommunication overheads are introduced by transmitting the type

eys, whose costs are (x + 2 k) | q | bits. The communication over-

eads of the WGC are nlr | e | bits, which is caused by transmitting

he encrypted watermark to the cloud.

.2. Experimental results

The focus of our work is not to design a novel watermarking

cheme; thus, we mainly evaluate the performance of the proposed

FPRE-OT protocol in this subsection.

Our implementation is in Java and deployed for testing on a

esktop PC equipped with an Intel Core i9-10900K CPU, 3.7GHz

ith 64GB RAM running Windows 10. All experiments are con-

ucted based on the Java pairing-based cryptography (De Caro and

ovino, 2011) with type A curve. The size of type value t is set to

e 64 bits and the size of each type m is set to be 1024 bits.

The performance of different stages. Let the number of all

ata types be n = 50 , the number of data types that the requester

s allowed to access be x , which ranges from 10 to 50 with an in-

erval of 10 in this experiment, and the number of data types that

he requester selects in an access be k = 5 . As shown in Fig. 7 , less

ime is spent on KeyGen , ReKeyGen , and Dec 1 , which are 7.27 ms,

.8 ms, and 4 ms, respectively. The time consumed by Enc and

eEnc are 394 ms and 181 ms. As x increases, the total time ex-

ended on TKeyGen and TKeyOT will gradually increase, ranging

rom 22 ms to 68 ms.

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

Fig. 7. Computation costs of different processes.

Fig. 8. Computation costs of TKeyGen and TkeyOT (x = 50).

Fig. 9. Computation costs of TKeyGen and TkeyOT (x = 100).

m

d

f

f

c

l

D

Fig. 10. Computation costs of homomorphic multiplication.

f

t

c

c

1

l

t

p

c

W

t

a

{
F

h

7

c

m

t

t

n

A

e

t

o

(

r

a

i

b

c

p

e

w

t

A

(

(

fi

In the upcoming content, we will further evaluate the perfor-

ance of TKeyGen and TKeyOT when k takes different values. We

o this because these are the two phases that our protocol are dif-

erent from existing proxy re-encryption schemes.

We set x = 50 , 100 in different experiments, with k ranging

rom 10 to x with an interval of 10. As shown in Figs. 8 and 9 , the

omputation time of the DO and the requester is approximately

inearly related to k . In Fig. 8 , when x = 50 , the time spent on the

O’s side ranges from 61 ms to 81 ms. The total time costs range
11
rom 77 ms to 163 ms. In Fig. 9 , when x = 100 , the time cost on

he requester’s side ranges from 16 ms to 160 ms. The total time

osts range from 160 ms to 320 ms.

The performance of the watermark embedding in the en-

rypted domain. The popular watermarking scheme (Cox et al.,

997) reveals that when embedding a watermark into the 10 0 0

argest DCT AC coefficients of an image in the plaintext domain,

he results show significantly robustness against various image

rocessing operations. Hence, embedding a watermark in the en-

rypted domain requires at least 10 0 0 multiplication operations.

e then evaluate the computation costs caused by multiplica-

ion in the encrypted domain when the data and watermarks

re encrypted by Enc (·) . We assume that each element in W =

w 1 , w 2 , ..., w l } is quantized to a positive integer. As shown in

ig. 10 , when l changes from 10 0 0 to 50 0 0, the execution time of

omomorphic multiplication ranges from 27 ms to 144 ms.

. Related work

Access control. Access control is a well-studied problem in the

ybersecurity domain. Gupta et al. (2017) present the first for-

alized access control model called HeAC for the Hadoop ecosys-

em. Next, they present a fine-grained attribute-based access con-

rol model, called HeABAC, catering to the security and privacy

eeds of the multi-tenant Hadoop ecosystem in Gupta et al. (2018) .

waysheh et al. (2020) present a big data Federation-oriented ref-

rence model for the secure development of access control solu-

ions within Hadoop clusters. In fact, our work resembles this line

f work on cloud-based data sharing.

ABE Bethencourt et al. (2007) , Goyal et al. (2006) and PRE

 Blaze et al., 1998) are also widely employed technologies in cur-

ent cloud-based data sharing schemes. Shao et al. (2015) propose

 fine-grained data sharing protocol for cloud computing by us-

ng a new cryptographic primitive named online/offline attribute-

ased proxy re-encryption and the transform key technique to

ope with the concerns of complex access policy and massive com-

utation cost. Similarly, in Fugkeaw and Sato (2018) , Somchart

t al. propose an ABE-based fine-grained access control scheme,

here a lightweight proxy re-encryption algorithm is developed

o update access policies and reduce the cloud’s computation cost.

s a further extension of PRE, type-based proxy re-encryption

TPRE) (Tang, 2008) and conditional proxy re-encryption (CPRE)

 Weng et al., 2009), (which are similar in principle), can achieve

ne-grained access control. They are used in many fields, such

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

a

(

e

c

w

o

c

o

o

m

d

Z

t

H

W

n

b

v

a

c

a

c

c

t

t

D

c

t

a

c

b

c

C

c

l

p

O

o

t

M

2

e

p

d

s

I

p

S

n

i

w

b

d

T

t

Z

w

p

t

N

t

t

G

i

w

p

a

p

d

t

H

i

e

t

w

h

c

8

w

t

e

d

w

t

t

d

a

o

t

c

w

f

e

b

D

r

t

C

m

i

V

Z

t

A

v

u

6

n

(

A

T

s

d

s mobile cloud environments (Park, 2011), cloud email systems

 Xu et al., 2015), and cloud storage systems (Liu et al., 2019). For

xample, Liu et al. (2019) propose a multi-conditional proxy broad-

ast re-encryption (MC-PBRE) scheme for file sharing systems,

here a single user can delegate the decryption rights to a group

f users. Ge et al. (2019) combine PRE and identity-based broad-

ast encryption for a video subscribing system, enabling a video

wner to share the encrypted videos with a set of subscribers at

ne time. However, enforcing access control alone for cloud-based

edia sharing would fail to deal with the problem that the me-

ia data may be illegally redistributed by authorized requesters.

hang et al. (2018) propose a secure media sharing scheme with

raitor tracing by embedding watermarks in the shared media data.

owever, it fails to fulfill the complex share situations in practice.

e claim that, since the complexity of the ciphertext structure,

one of the exiting fine-grained access control schemes can em-

ed watermarks in encrypted data without barriers.

Access history hiding. In order to protect the requesters’ pri-

acy in cloud-based data sharing, (Liu et al., 2012) propose an

nonymous and traceable group data sharing scheme for cloud

omputing. The identities’ information of both the data owners

nd the requesters is protected by group signature. In the same

ase, (Shen et al., 2017) propose a group data sharing scheme that

an resist the collusion attack performed by the cloud server and

he revoked malicious requesters. The above schemes are designed

o protect the requester’s identity information. Chaudhari and

as (2019) use attribute-based encryption to enable users to ac-

ess the subset of data without revealing their access rights to

he cloud server, which is proven secure against chosen-keyword

ttacks in the random oracle model. Different from them, we fo-

us on protecting the requesters’ access content in the cloud-

ased data sharing scenarios. A similar line of work is the ac-

ess control method based on oblivious transfer (Rabin, 2005).

amenisch et al. (2009) propose an oblivious transfer with access

ontrol (AC-OT) protocol, where the database provider does not

earn which records the requester accesses. Han et al. (2015) pro-

ose an accountable oblivious transfer with access control (AAC-

T) protocol to further address the issue of malicious requesters

verusing the records.

Traitor tracing. As to traitor tracing, provenance has been ex-

ensively used in tracking the usage of cloud data (Hu et al., 2020;

uniswamy-Reddy et al., 2006). In particular, logging (Imran et al.,

018; Suen et al., 2013) and blockchain (Liang et al., 2017; Zhang

t al., 2017) are widely adopted technologies for recording data

rocessing and transmission history. Suen et al. (2013) propose a

ata event logging mechanism, which captures, analyses, and vi-

ualizes data events in the cloud from the data point of view.

mran et al. (2018) present a complete architecture for aggregated

rovenance regarding key cloud layers such as IaaS, PaaS, SaaS and

torage service. Though logging is an efficient provenance tech-

ique to monitor system events and end-to-end data transmission,

t is inefficient to track the data that pass through multiple net-

ork nodes (Hu et al., 2020). ProvChain (Liang et al., 2017) is a

lockchain-based provenance system that views blockchain as a

istributed database for assuring data integrity and verifiability.

o protect provenance information and achieve off-chain verifica-

ion, smart contracts are introduced into the provenance system in

hang et al. (2017) . Nevertheless, the provenance-based schemes

ould expose the data accessing records, failing to protect such

rivate histories for the sake of the requesters.

In addition to the above provenance-based schemes,

here are other solutions designed to track traitors.

ishimaki et al. (2016) construct a traitor tracing scheme, where

he requester’s identity information is embedded directly into

he private key and can be recovered by the tracing algorithm.

oyal et al. (2019) provide a collision-resistant traitor trac-
12
ng scheme, which is proven to be secure under the learning

ith errors assumption. In Li et al. (2018) , Li et al. propose a

rivacy-aware multi-authority ciphertext-policy ABE scheme with

ccountability, which hides the attribute information in the ci-

hertext and traces the dishonest user identity who shares the

ecryption key. However, the above schemes are designed to track

raitors who leak their private keys rather than the data leakers.

uang et al. (2020) propose an accountable and efficient data shar-

ng scheme for industrial IoT, where the requester’s private key is

mbedded into the shared data so that the data owner can pursue

he responsibility of the data leaker. Zhang et al. (2018) embed

atermarks in encrypted media data by sufficiently utilizing the

omomorphic properties residing in proxy re-encryption, which

an track traitors from the leaked data.

. Conclusion

Aiming at satisfying the security requirements of different roles,

e propose a secure media data sharing scheme with differen-

ial access control and access history hiding. We note that differ-

ntial access control requires watermarks to be embedded in the

edicated encrypted media data, which is non-trivial. Accordingly,

e design a fine-grained sharing protocol TFPRE-OT, which main-

ains the encryption algorithm’s homomorphism to accommodate

he operations required by watermarking. Using TFPRE-OT, the me-

ia data are stored and shared according to its types. We generate

 type key for each type of data and transmit these keys using an

blivious transfer protocol. As a result, the requesters’ access his-

ories can be hidden to protect their privacy. Moreover, the total

omputation and communication overheads are reduced compared

ith the existing TPRE schemes. Finally, security analysis and per-

ormance evaluation indicate that our scheme is both secure and

fficient. For future work, we intend to study the methods of em-

edding evidence in non-media data for traitor tracing.

eclaration of Competing Interest

The authors declare the following financial interests/personal

elationships which may be considered as potential competing in-

erests:

RediT authorship contribution statement

Tengfei Zheng: Conceptualization, Methodology, Software, For-

al analysis, Writing – original draft. Yuchuan Luo: Conceptual-

zation, Writing – review & editing. Tongqing Zhou: Methodology,

alidation, Writing – original draft, Writing – review & editing.

hiping Cai: Supervision, Project administration, Funding acquisi-

ion, Writing – review & editing.

cknowledgement

This work is supported by the National Key Research and De-

elopment Program of China (2020YFC20 0340 0), the National Nat-

ral Science Foundation of China (62072465 , 62172155 , 62102425 ,

2102429), the Science and Technology Innovation Program of Hu-

an Province (No. 2021RC2071) and the NUDT Research Grants

Zk19-38).

ppendix A. Proofs of Theorem 2

heorem 2. (TFPRE-OT-CPA security): Our proposal is TFPRE-OT-CPA-

ecure based on the DDH and the 3-wDBDHI assumptions in the stan-

ard model.

https://doi.org/10.13039/501100012166
https://doi.org/10.13039/501100001809

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

P

C

L

m

P

p

w

c

p

c

o

c

d

(
0

l

d

f

f

A
t

p

a

f

w

r

t(
g

f

g

e

t

o

m

d

c

p

e

f

f

t

l

t

L

m

P

b

w

b

S

i

h

r

c

(

d

f

f

A
t

p

a

f

w

r

t(
g

f

g

i

R

o

t

d

c

p

roof. We first prove TFPRE-OT-L2-CPA security and TFPRE-OT-L1-

PA security in Lemma 1 and Lemma 2 , respectively. �

emma 1. Our proposal is TFPRE-OT-L2-CPA secure in the standard

odel under the assumption that the 3-wDBDHI problem is hard.

roof. Assuming that A can win Game 0 with a non-negligible

robability ε, then we can use a simulator S to solve the 3-

DBDHI problem with a non-negligible probability ε′ .
(1) Setup phase. Let S set the group G 1 and G 2 with an effi-

ient bilinear map e and a generator g of G 1 . On 3-wDBDHI in-

ut

⎛

⎝ g, A −1 = g

1

a , A 1 = g a , A 2 = g a
2
, B = g b , T

⎞

⎠ , S ’s goal is to de-

ide if T = e (g, g)
b

a 2 or not. In the following, we call HU the set

f honest parties, including the target user i ∗, and CU the set of

orrupt parties. S sets y = A 1 , y
α = A 2 , y

β = A −1 , y
γ = B for ran-

omly chosen α, β, γ ∈ Z ∗q . Next, S sends A the global parameters

g, Z, T , G 1 , G 2 , H 1 , H 2 , H 0) . A issues a series of queries as in Game

. S maintains a list L list and answers these queries for A as fol-

owing phases.

(2) Query phase-1.

• Public key generation oracle O pk : On receiving an input of in-

ex i , S first randomly selects x i ∈ Z ∗q and generates public key as

ollows:

-If i ∈ HU \ { i ∗} , S computes pk i = A

x i
1

.

-The target user’s public key is set as pk i = A

x i
2

.

-If i ∈ CU , S generates a key pair (pk i = g x i , sk i = x i) .

S sends pk i to A and adds the tuple (pk i , x i) to L
list .

• Secret key generation oracle O sk : On receiving an input of pk i
rom A , where pk i is from O pk , if pk i is corrupted, S searches for

pk i in L list and returns sk i = x i ; otherwise, S returns ⊥ .

• TKey generation oracle O tk : On receiving an input of t σ from

 , S runs the TKeyGen algorithm and returns tk σ , where tk σ is

he type key corresponding to t σ .

• Re-encryption key generation oracle O rk : On receiving an in-

ut of
(

pk i , pk j
)

from A , where pk i and pk j are from O pk , S selects

 random number z ∈ Z ∗q and generates rk i → j for A according to the

ollowing cases:

- If i ∈ CU , S outputs rk i → j = pk
z
x i
j

.

- If i ∈ HU \ { i ∗} , S returns rk i → j = A

zx j
x i

−1
= g

zx j
ax i .

- If i = i ∗, S outputs a random bit in { 0 , 1 } and aborts.

• Encryption oracle O enc : On receiving an input of (pk i , m, t i) ,

here pk i is from O pk , S first selects a random number r ∈ Z ∗q and

uns the Enc algorithm to generate the original ciphertext C 2 . S
hen sends C 2 to A .

• Re-encryption oracle O re : On receiving an input of

pk i , pk j , C 2 , T
)

from A , S first parses C 2 as (c 1 , c 2) and then

enerates the re-encrypted ciphertext C 1 for A according to the

ollowing cases:

- If i = i ∗, S first computes K = e (c 1 , g
β
x i) = e (g, g) r and then

enerates c
′
1

= K

x j z . Finally, S sends A with C 1 =

(
c
′
1
, c 2

)
.

- Otherwise, S generates a re-encryption key rk i → j as in the re-

ncryption key oracle O re , and then returns C 1 = ReEnc
(
rk i → j , C 2

)
o A .

(3) Challenge. Once A decides that Query phase-1 is over, it

utputs the target user’s public pk i ∗ , a message type t ∗, and two

essages m 0 and m 1 with equal length. Let r ∗ =

b
a 2

, then S ran-

omly selects b ∈ { 0 , 1 } and responds c ∗
1

= B x i ∗ = A

x i ∗ b

a 2

2
= pk r

∗
i ∗ and

∗
2

= m b T H 0 (t
∗) .

(4) Query phase-2. A continues to make queries as in the Query

hase-1.
13
(5) Guess. A outputs the guess b ′ . If b = b ′ , then S guesses T =
 (g, g)

b

a 2 ; otherwise, S guesses T = e (g, g) r .

We observe that if T = e (g, g)
b

a 2 , then the simulation is per-

ect; and if T = e (g, g) r , then m b is information theoretically hidden

rom A . Thus, if A succeeds with probability ε at winning Game 0,

hen S succeeds with probability ε at solving the 3-wDBDHI prob-

em. Since this contradicts the 3-wDBDHI assumption, we can ob-

ain Lemma 1 . �

emma 2. Our proposal is TFPRE-OT-L1-CPA secure in the standard

odel under the assumption that the DDH problem is hard.

roof. Assuming A can win Game 1 with a non-negligible proba-

ility ε, there exists a simulator S that can solve the DDH problem

ith a non-negligible probability ε′ .
(1) Setup phase. Let S set the group G 1 and G 2 with an efficient

ilinear map e and a generator g of G 1 . On DDH input
(
g, g a , g b , g c

)
,

’s goal is to decide if g c = g ab or not. This is equivalent to ask-

ng if e (g, g c) = e
(
g a , g b

)
. In the following, we call HU the set of

onest parties, including the target user i ∗, and CU the set of cor-

upt parties. S sets y = g b , y α = g a , y β = g, T = e (g, g c) for randomly

hosen (a, b, c, α, β) ∈ Z ∗q . Next, S sends A the global parameters

g, Z, G 1 , G 2 , H 1 , H 2 , H 0) .

(2) Query phase-1.

• Public key generation oracle O pk : On receiving an input of in-

ex i , S first randomly selects x i ∈ Z ∗q , and generates public key as

ollows:

- If i ∈ HU \ { i ∗} , S computes pk i = y x i .

- The target user’s public key is set as pk i = (g a)
x i .

- If i ∈ CU , S generates public key pk i = g x i .

S sends pk i to A and adds (pk i , x i) to L
list .

• Secret key generation oracle O sk : On receiving an input of pk i
rom A , where pk i is from O pk , if pk i is corrupted, S searches for

pk i in L list and returns sk i = x i ; otherwise, S returns ⊥ .

• TKey generation oracle O tk : On receiving an input of t σ from

 , S runs the TKeyGen algorithm and returns tk σ , where tk σ is

he type key corresponding to t σ .

• Re-encryption key generation oracle O rk : On receiving an in-

ut of
(

pk i , pk j
)

from A , where pk i and pk j are from O pk , S selects

 random number z ∈ Z ∗q and generates rk i → j for A according to the

ollowing cases:

- If i ∈ CU , S outputs rk i → j = pk
z
x i
j

.

- If i ∈ HU \ { i ∗} , S returns rk i → j = g

zx j
βx i = g

zx j
bx i .

- If i = i ∗, S outputs a random bit in { 0 , 1 } and aborts.

• Encryption oracle O enc : On receiving an input of (pk i , m, t i) ,

here pk i is from O pk , S first selects a random number r ∈ Z ∗q and

uns the Enc algorithm to generate the original ciphertext C 2 . S
hen sends C 2 to A .

• Re-encryption oracle O re : On receiving an input of

pk i , pk j , C 2 , T
)

by A , S first parses C 2 as (c 1 , c 2) , and then

enerates the re-encrypted ciphertext C 1 for A according to the

ollowing cases:

- If i = i ∗, S first computes K = e (c 1 , g
α

βx i) = e (g, g) r , and then

enerates c
′
1 = K

x j z . Finally, S sends A with C 1 =

(
c
′
1 , c 2

)
.

- Otherwise, S generates the re-encryption key rk i → j as

n the re-encryption key oracle O re , and then returns C 1 =

eEnc
(
rk i → j , C 2

)
to A .

(3) Challenge. Once A decides that Query phase-1 is over, it

utputs the target user’s public key pk i ∗ , a random number z and

wo messages m 0 and m 1 with equal length. Let r ∗ = ab, S ran-

omly selects b ∈ { 0 , 1 } , and responds c ∗
1

= e (g, pk i ∗)
zb = Z zr ∗x i and

∗
2

= m b T H 0 (t
∗) .

(4) Query phase-2. A continues to make queries as in Query

hase-1.

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

o

c

A
t

t

b

w

c

A

T

o

P

t

a

U
i

U
i

i

T

q

T

i

t

H

s

s

I

k

t

T

R

A

A

B

B

C

C

C

C

C

C

D

E

F

G

G

G

G

G

H

H

H

I

I

J

L

L

L

L

L

L

L

M

M

N

P

P

P

R

R

S

(5) Guess. A outputs guess b ′ . If b = b ′ , then S guesses c = ab;

therwise, S guesses c � = ab.

We observe that if c = ab, then the simulation is perfect; and if

 � = ab, then m b is information theoretically hidden from A . Thus, if

 succeeds with non-negligible probability ε at winning Game 1,

hen S succeeds with probability ε at solving DDH problem. Since

his contradicts the DDH assumption, we can obtain Lemma 2 .

According to definition 3, TFPRE-OT-CPA security can be assured

y TFPRE-OT-L2-CPA security and TFPRE-OT-L1-CPA security jointly,

hich are proved in Lemma 1 and Lemma 2 , respectively. Thus, we

an obtain Theorem 2 . �

ppendix B. Proof of Theorem 3

heorem 3. Our scheme can ensure the DO’s security in the random

racle model under the assumption that the CT-CDH problem is hard.

roof. For each possible curious U , we construct a simulator S in

he ideal model such that the outputs of S and U are indistinguish-

ble. S works as follows in the random oracle model.

(1) Setup phase. Assuming that the indices of type keys with in

’s rights are { σ 1 , σ 2 , ..., σ k } and the corresponding type keys set

s T K

′ =

{
t k σ1

, t k σ2
, ..., tk σk

}
. Let H 2 be the random oracle. S sends

the system parameters (g, G 1 , H 1 , H 2) . The set of all type keys T K

s stored in the TTP.

(2) Simulation phase.

• S simulates U to obtain
{

A

∗
1
, A

∗
2
, ..., A

∗
k

}
. When U queries H 1 on

ndex i , S returns a random h ∗
i

∈ G 1 generated by the target oracle

 G (·) .
• On receiving an input of

(
A

∗
1 , A

∗
2 , ..., A

∗
k

)
, S forwards these

ueries to the helper oracle H G (·) to generate
(
x ∗, D

∗
1 , D

∗
2 , ..., D

∗
k

)
.

hen S randomly selects
(
c ∗1 , c

∗
2 , ..., c

∗
n

)
.

• S simulates U on input
(
D

∗
1 , D

∗
2 , ..., D

∗
k
, c ∗1 , c

∗
2 , ..., c

∗
n

)
and mon-

tors U ’s queries. If U queries H 2 on some v j =

(
h ∗

j

)x ∗
, S sends j

o the TTP to obtain tk j . S returns c ∗
j
� tk j as the query result of

 2 (v j) ; otherwise, S returns a random number.

• S outputs (A

∗
1 , A

∗
2 , ..., A

∗
k
, D

∗
1 , D

∗
2 , ..., D

∗
k
, c ∗1 , c

∗
2 , ..., c

∗
n) .

In the above simulation, S returns the output of T G (·) as the re-

ult of U ’s queries on H 1 . On receiving an input of
(
A

∗
1
, A

∗
2
, ..., A

∗
k

)
, S

imulates the DO to generate the corresponding outputs by H G (·) .
f U queries H 2 on legal v j i for all 1 ≤ i ≤ k + 1 , S can output

 + 1 pairs of (v j i , j i) . Since this contradicts the CT-CDH assump-

ion, U can obtain at most k type keys in T K

′ . Thus, we can obtain

heorem 3 . �

eferences

teniese, G. , Fu, K. , Green, M. , Hohenberger, S. , 2006. Improved proxy re-encryption

schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9 (1), 1–30 .

waysheh, F.M. , Alazab, M. , Gupta, M. , Pena, T.F. , Cabaleiro, J.C. , 2020. Next-gener-
ation big data federation access control: areference model. Future Gener. Com-

put. Syst. 108, 726–741 .
ethencourt, J. , Sahai, A. , Waters, B. , 2007. Ciphertext-policy attribute-based en-

cryption. In: Proceedings of the IEEE Symposium on Security and Privacy. IEEE,

pp. 321–334 .
laze, M. , Bleumer, G. , Strauss, M. , 1998. Divertible protocols and atomic proxy cryp-

tography. In: Proceedings of the International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, pp. 127–144 .

amenisch, J. , Dubovitskaya, M. , Neven, G. , 2009. Oblivious transfer with access con-
trol. In: Proceedings of the 16th ACM Conference on Computer and Communi-

cations Security, pp. 131–140 .
astiglione, A. , De Santis, A. , Masucci, B. , Palmieri, F. , Huang, X. , Castiglione, A. , 2017.

Supporting dynamic updates in storage clouds with the Akl–Taylor scheme. Inf.

Sci. 387, 56–74 .
haudhari, P. , Das, M.L. , 2019. Privacy preserving searchable encryption with fine–

grained access control. IEEE Trans. Cloud Comput. 9 (2), 753–762 .
hu, C.K. , Tzeng, W.-G. , 2008. Efficient k-out-of-n oblivious transfer schemes. J. Univ.

Comput. Sci. 14 (3), 397–415 .
14
ostello, C. , Fournet, C. , Howell, J. , Kohlweiss, M. , Kreuter, B. , Naehrig, M. , Parno, B. ,
Zahur, S. , 2015. Geppetto: versatile verifiable computation. In: Proceedings of

the IEEE Symposium on Security and Privacy. IEEE, pp. 253–270 .
ox, I.J. , Kilian, J. , Leighton, F.T. , Shamoon, T. , 1997. Secure spread spectrum water-

marking for multimedia. IEEE Trans. Image Process. 6 (12), 1673–1687 .
e Caro, A. , Iovino, V. , 2011. jPBC: java pairing based cryptography. In: Proceedings

of the IEEE Symposium on Computers and Communications. IEEE, pp. 850–855 .
lGamal, T. , 1985. A public key cryptosystem and a signature scheme based on dis-

crete logarithms. IEEE Trans. Inf. Theory 31 (4), 469–472 .

ugkeaw, S. , Sato, H. , 2018. Scalable and secure access control policy update for out-
sourced big data. Future Gener. Comput. Syst. 79, 364–373 .

e, C. , Zhou, L. , Xia, J. , Szalachowski, P. , Su, C. , 2019. A secure fine-grained iden-
tity-based proxy broadcast re-encryption scheme for micro-video subscribing

system in clouds. In: Proceedings of the International Symposium on Security
and Privacy in Social Networks and Big Data. Springer, pp. 139–151 .

oyal, R. , Koppula, V. , Waters, B. , 2019. Collusion resistant traitor tracing from learn-

ing with errors. SIAM J. Comput. 49 (5), 18–94 .
oyal, V. , Pandey, O. , Sahai, A. , Waters, B. , 2006. Attribute-based encryption for fine–

grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98 .

upta, M. , Patwa, F. , Sandhu, R. , 2017. Object-tagged RBAC model for the Hadoop
ecosystem. In: Proceedings of the IFIP Annual Conference on Data and Applica-

tions Security and Privacy. Springer, pp. 63–81 .

upta, M. , Patwa, F. , Sandhu, R. , 2018. An attribute-based access control model for
secure big data processing in Hadoop ecosystem. In: Proceedings of the Third

ACM Workshop on Attribute-Based Access Control, pp. 13–24 .
an, J. , Susilo, W. , Mu, Y. , Au, M.H. , Cao, J. , 2015. AAC-OT: accountable oblivious

transfer with access control. IEEE Trans. Inf. ForensicsSecur. 10 (12), 2502–2514 .
u, R. , Yan, Z. , Ding, W. , Yang, L.T. , 2020. A survey on data provenance in iot. World

Wide Web 23 (2), 1441–1463 .

uang, C. , Liu, D. , Ni, J. , Lu, R. , Shen, X. , 2020. Achieving accountable and effi-
cient data sharing in industrial internet of things. IEEE Trans. Ind. Inf. 17 (2),

1416–1427 .
braimi, L. , Tang, Q. , Hartel, P. , Jonker, W. , 2008. A type-and-identity-based proxy

re-encryption scheme and its application in healthcare. In: Proceedings of the
Workshop on Secure Data Management. Springer, pp. 185–198 .

mran, M. , Hlavacs, H. , Khan, F.A. , Jabeen, S. , Khan, F.G. , Shah, S. , Alharbi, M. , 2018.

Aggregated provenance and its implications in clouds. Future Gener. Comput.
Syst. 81, 348–358 .

ia, X. , Shao, J. , Jing, J. , Liu, P. , 2010. CCA-secure type-based proxy re-encryption with
invisible proxy. In: Proceedings of the 10th IEEE International Conference on

Computer and Information Technology. IEEE, pp. 1299–1305 .
i, J. , Chen, X. , Chow, S.S. , Huang, Q. , Wong, D.S. , Liu, Z. , 2018. Multi-authority fine–

grained access control with accountability and its application in cloud. J. Netw.

Comput. Appl. 112, 89–96 .
iang, X. , Shetty, S. , Tosh, D. , Kamhoua, C. , Kwiat, K. , Njilla, L. , 2017. ProvChain: a

blockchain-based data provenance architecture in cloud environment with en-
hanced privacy and availability. In: Proceedings of the 17th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing. IEEE, pp. 468–477 .
ibert, B. , Vergnaud, D. , 2011. Unidirectional chosen-ciphertext secure proxy re-en-

cryption. IEEE Trans. Inf. Theory 57 (3), 1786–1802 .
iu, H. , Li, X. , Xu, M. , Mo, R. , Ma, J. , 2017. A fair data access control towards rational

users in cloud storage. Inf. Sci. 418, 258–271 .

iu, Q. , Wang, G. , Wu, J. , 2014. Time-based proxy re-encryption scheme for secure
data sharing in a cloud environment. Inf. Sci. 258, 355–370 .

iu, X. , Zhang, Y. , Wang, B. , Yan, J. , 2012. Mona: secure multi-owner data sharing for
dynamic groups in the cloud. IEEE Trans. Parallel Distrib.Syst. 24 (6), 1182–1191 .

iu, Y. , Ren, Y. , Ge, C. , Xia, J. , Wang, Q. , 2019. A CCA-secure multi-conditional proxy
broadcast re-encryption scheme for cloud storage system. J. Inf. Secur. Appl. 47,

125–131 .

anikandan, R. , Rengarajan, A. , Devibala, C. , Gayathri, K. , Malarvizhi, T. , 2019. Secure
and traceable medical image sharing using enigma in cloud? In: Proceedings

of the International Conference on Emerging Current Trends in Computing and
Expert Technology. Springer, pp. 816–825 .

uniswamy-Reddy, K.-K. , Holland, D.A. , Braun, U. , Seltzer, M.I. , 2006. Prove-
nance-aware storage systems. In: Proceedings of the Usenix Annual Technical

Conference, pp. 43–56 .

ishimaki, R. , Wichs, D. , Zhandry, M. , 2016. Anonymous traitor tracing: how to
embed arbitrary information in a key. In: Proceedings of the Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer, pp. 388–419 .

areek, G. , Purushothama, B. , 2020. Proxy re-encryption for fine-grained access con-
trol: its applicability, security under stronger notions and performance. J. Inf.

Secur. Appl. 54, 102543 .

ark, N. , 2011. Secure data access control scheme using type-based re-encryption
in cloud environment. In: Semantic methods for knowledge management and

communication. Springer, pp. 319–327 .
eter, A. , Tews, E. , Katzenbeisser, S. , 2013. Efficiently outsourcing multiparty compu-

tation under multiple keys. IEEE Trans. Inf. ForensicsSecur. 8 (12), 2046–2058 .
abin, M.O. , 2005. How to exchange secrets with oblivious transfer. IACR Cryptol.

ePrint Arch 2005 (187) .

ial, A. , Balasch, J. , Preneel, B. , 2010. A privacy-preserving buyer–seller watermark-
ing protocol based on priced oblivious transfer. IEEE Trans. Inf. ForensicsSecur.

6 (1), 202–212 .
eo, J.W. , Yum, D.H. , Lee, P.J. , 2013. Proxy-invisible CCA-secure type-based proxy

re-encryption without random oracles. Theor. Comput. Sci. 491, 83–93 .

http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0005
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0014
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0018
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0022
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0034
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0039
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0040

T. Zheng, Y. Luo, T. Zhou et al. Computers & Security 113 (2022) 102553

S

S

S

S

T

W

W

W

X

Y

Y

Z

Z
hao, J. , Lu, R. , Lin, X. , 2015. Fine-grained data sharing in cloud computing for mo-
bile devices. In: Proceedings of the IEEE Conference on Computer Communica-

tions. IEEE, pp. 2677–2685 .
hen, J. , Zhou, T. , Chen, X. , Li, J. , Susilo, W. , 2017. Anonymous and traceable

group data sharing in cloud computing. IEEE Trans. Inf. ForensicsSecur. 13 (4),
912–925 .

isinni, E. , Saifullah, A. , Han, S. , Jennehag, U. , Gidlund, M. , 2018. Industrial internet
of things: challenges, opportunities, and directions. IEEE Trans. Ind. Inf. 14 (11),

4724–4734 .

uen, C.H. , Ko, R.K. , Tan, Y.S. , Jagadpramana, P. , Lee, B.S. , 2013. S2Logger: end-to-end
data tracking mechanism for cloud data provenance. In: Proceedings of the 12th

IEEE International Conference on Trust, Security and Privacy in Computing and
Communications. IEEE, pp. 594–602 .

ang, Q. , 2008. Type-based proxy re-encryption and its construction. In: Proceedings
of the International Conference on Cryptology in India. Springer, pp. 130–144 .

agner, D. , Schneier, B. , et al. , 1996. Analysis of the SSL 3.0 protocol. In: Proceedings

of the USENIX Workshop on Electronic Commerce, vol. 1, pp. 29–40 .
eng, J. , Deng, R.H. , Ding, X. , Chu, C.-K. , Lai, J. , 2009. Conditional proxy re-encryp-

tion secure against chosen-ciphertext attack. In: Proceedings of the 4th Inter-
national Symposium on Information, Computer, and Communications Security.

ACM, pp. 322–332 .
u, Y. , Cao, N. , Gotz, D. , Tan, Y.-P. , Keim, D.A. , 2016. A survey on visual analytics of

social media data. IEEE Trans. Multimedia 18 (11), 2135–2148 .

u, P. , Jiao, T. , Wu, Q. , Wang, W. , Jin, H. , 2015. Conditional identity-based broadcast
proxy re-encryption and its application to cloud email. IEEE Trans. Comput. 65

(1), 66–79 .
u, S. , Wang, C. , Ren, K. , Lou, W. , 2010. Achieving secure, scalable, and fine-grained

data access control in cloud computing. In: Proceedings of the IEEE Conference
on Computer Communications. IEEE, pp. 1–9 .

u, X. , Yan, Z. , Vasilakos, A.V. , 2017. A survey of verifiable computation. Mob. Netw.

Appl. 22 (3), 438–453 .
hang, L.Y. , Zheng, Y. , Weng, J. , Wang, C. , Shan, Z. , Ren, K. , 2018. You can access but

you cannot leak: defending against illegal content redistribution in encrypted
cloud media center. IEEE Trans. Dependable Secure Comput. 17 (6), 1218–1231 .

hang, Y. , Wu, S. , Jin, B. , Du, J. , 2017. A blockchain-based process provenance for
cloud forensics. In: Proceedings of the 3rd IEEE International Conference on

Computer and Communications. IEEE, pp. 2470–2473 .

Tengfei Zheng received the M.S. and B.S. degrees in col-

lege of Computer Science and Technology from North
China Electric Power University, China, in 2019 and 2016,

respectively. He is currently a Ph.D. candidate in National
University of Defense Technology, China. His research in-

terests include data security and privacy protection.
15
Yuchuan Luo received the PhD degree from the National

University of Defense Technology (NUDT) in 2019 in Com-
puter Science and Technology. He is currently a lecturer at

College of Computer of NUDT. His research interests focus
on security and privacy in cloud and crowdsourcing.

Tongqing Zhou received the bachelor’s, master’s, and
Ph.D degrees in Computer Science and Technology

from National University of Defense Technology (NUDT),
Changsha in 2012, 2014, and 2018, respectively. He is cur-

rently a postdoc in College of Computer, NUDT. His main

research interests include ubiquitous computing, mobile
sensing, and data privacy.

Zhiping Cai (corresponding author) received the B.Eng.,

M.A.Sc., and Ph.D degrees in computer science and tech-
nology from the National University of Defense Technol-

ogy (NUDT), China, in 1996, 2002, and 2005, respectively.

He is a full professor in the College of Computer, NUDT.
His current research interests include network security

and big data. He is a senior member of the CCF and a
member of the IEEE.

http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0049
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0050
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00377-1/sbref0053

	Towards differential access control and privacy-preserving for secure media data sharing in the cloud
	1 Introduction
	1.1 Main contributions
	1.2 Organization

	2 Preliminaries
	2.1 Bilinear map
	2.2 Complexity assumptions
	2.3 Oblivious transfer
	2.4 Type-based proxy re-encryption
	2.5 Watermark embedding in encrypted domain

	3 Problem statement
	3.1 System model
	3.2 Threat model
	3.3 Design goals

	4 Type-based flexible proxy re-encryption with oblivious transfer
	4.1 Formulation of the TFPRE-OT protocol
	4.2 Formal security definitions
	4.3 Instantiation of the TFPRE-OT protocol
	4.4 Security analysis

	5 The proposed data sharing scheme
	5.1 Overview
	5.2 Detailed data sharing process
	5.3 Scheme discussion
	5.3.1 Data confidentiality
	5.3.2 Differential access control
	5.3.3 Access history hiding

	6 Evaluation
	6.1 Cost analysis
	6.1.1 Overheads of TFPRE-OT
	6.1.2 Overheads of the data sharing scheme

	6.2 Experimental results

	7 Related work
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	Appendix A Proofs of Theorem 2
	Appendix B Proof of Theorem 3
	References

