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Dynamic Modeling Cross-Modal Interactions in
Two-Phase Prediction for Entity-Relation Extraction

Shan Zhao , Minghao Hu , Zhiping Cai , and Fang Liu , Member, IEEE

Abstract— Joint extraction of entities and their relations
benefits from the close interaction between named entities and
their relation information. Therefore, how to effectively model
such cross-modal interactions is critical for the final performance.
Previous works have used simple methods, such as label-feature
concatenation, to perform coarse-grained semantic fusion among
cross-modal instances but fail to capture fine-grained correlations
over token and label spaces, resulting in insufficient interactions.
In this article, we propose a dynamic cross-modal attention
network (CMAN) for joint entity and relation extraction. The net-
work is carefully constructed by stacking multiple attention units
in depth to dynamic model dense interactions over token-label
spaces, in which two basic attention units and a novel two-phase
prediction are proposed to explicitly capture fine-grained corre-
lations across different modalities (e.g., token-to-token and label-
to-token). Experiment results on the CoNLL04 dataset show that
our model obtains state-of-the-art results by achieving 91.72%
F1 on entity recognition and 73.46% F1 on relation classification.
In the ADE and DREC datasets, our model surpasses existing
approaches by more than 2.1% and 2.54% F1 on relation
classification. Extensive analyses further confirm the effectiveness
of our approach.

Index Terms— Entity, interactions, modalities, relations.

I. INTRODUCTION

EXTRACTION of entities and their relations from unstruc-
tured raw texts has attracted increasing attention due to

its important application on knowledge base population, infor-
mation retrieval, and question answering [1]. Given a sentence,
the task aims to find the location and type of mentioned entities
and further detect semantic relations among those entities.
For example, in Fig. 1, “Tanya” is a person entity (Peop),
while “Shabds Hospital” and “Gainesville” are two location
entities (Loc) connected by a “Located In” relation.
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Traditionally, the task of extracting semantic relations
between entities is decoupled into a pipeline of two separated
subtasks, namely, named entity recognition (NER) [2]–[4] and
relation extraction (RE) [5]. Since named entities interact
closely with their relation information (two location entities
are usually linked with a “Located In” relation), joint models
that simultaneously learn NER and RE have been proposed
and have achieved promising results [6]–[9]. However, joint
models only capture such cross-modal interaction by learning
shared representations via multitask training but fail to take
label information into account, which turns out to be a signif-
icant limitation. For example, if the model knows that “Shabds
Hospital” and “Gainesville” are location entities beforehand,
it can easily infer there may exist a “Located In” relation
between them.

To overcome the problem of insufficient cross-modal inter-
actions, some works [6], [8] propose to enhance downstream
RE performance by leveraging label information extracted
from the upstream NER process. These approaches adopt
simple feature concatenation to fuse label information into
contextualized representations, which results in promising
performance improvement. However, such naive methods can
only learn coarse-grained interactions of cross-modal instances
via token-level semantic fusion but cannot effectively infer
the correlation between each token and each tagging label
(e.g., it is beneficial that “Shabds Hospital” is aware of
“Gainesville” being assigned with a “B-LOC” tag). Moreover,
token-level self-correlation is also important for both NER and
RE, which has been ignored by previous RNN- or CNN-based
models [10], [11]. For example, the fact that “Shabds Hos-
pital” is highly relevant to “Gainesville,” but less related
with “Tanya” is helpful for entity recognition and relation
classification. Furthermore, most of the proposed models do
not focus on weighting the losses of the two tasks, which
ignores the relative weighting between each task loss. Correct
weighting losses are of importance for joint models.

To address the above issues, we propose a dynamic
cross-modal attention network (CMAN) for joint entity and
RE. Inspired by multimodal learning in computer vision [12],
we view token and label spaces as two different modalities
and attempt to model dense cross-modal interactions over
these two spaces. To achieve this, we first design two basic
attention units: a BiLSTM-enhanced self-attention (BSA) unit
that aims to model intramodal interactions across differ-
ent tokens (token-to-token); and a BiLSTM-enhanced label-
attention (BLA) unit that is capable of modeling intermodal
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Fig. 1. Example from the CoNLL04 dataset, where the goal is to identify mentioned entities and corresponding relationships in the sentence.

interactions (label-to-token). BSA is able to build direct con-
nections between two arbitrary tokens in a sentence despite
their distances, while BLA explicitly leverages label-space
information to enhance contextualized token representations.
Then, we design a novel two-phase prediction, which dynami-
cally controls label feature contributions and not only can take
into account the interactions between token and label features
in RE but also in NER. Given the token-label embeddings,
CMAN first utilizes BSA units to generate self-aware token
features and label information in the first-phase prediction,
and then, in second-phase prediction, we construct the entire
model by carefully stacking multiple attention units to form
a deep network architecture for fully capturing cross-modal
interactions, where gold label information is available only
during training and is predicted by first-phase during infer-
ence. Next, we introduce homoscedastic uncertainty [13] to
automatically weighting the losses of two-phase prediction.
By adding homoscedastic uncertainty feed to losses, these
homoscedastic uncertainties can learn a relative weighting
automatically from the data and are robust to the weight
initialization. Finally, we conducted extensive experiments on
CoNLL04, ADE, and DREC datasets to evaluate the proposed
model. In CoNLL04, our model obtains state-of-the-art results
by achieving 91.72% and 73.46% F1 on entity recognition
and relation classification, respectively. Moreover, our model
surpasses existing approaches by more than 2.1% and 2.54%
F1 score on relation classification in the ADE and DREC
datasets, respectively.

We note that a shorter conference version of this arti-
cle [14] is accepted for IJCAI 2020. Our initial conference
paper only performs dense cross-modal interaction learning
in relation classification. However, we argue that taking into
account the interactions between token and label features is
beneficial for entity recognition. To achieve this, we design
a cross-modal interaction in two-phase prediction. Moreover,
we propose a label gate to control label feature contributions.
Finally, we introduce homoscedastic uncertainty to automat-
ically weighting losses. This article also provides additional
analysis of more datasets.

II. RELATED WORK

A. Joint Entity-Relation Extraction

Due to the existence of close interactions between
entity recognition and relation classification, joint models
that simultaneously learn NER and RE have outperformed
pipelined methods [16] by a large margin. Specifically, Miwa
and Bansal [6] employ bidirectional tree-structured RNNs,
which extracts relationships between entities based on word

order information and dependent tree structure information.
Wang et al. [10] extract relations using multilevel attention
CNNs. Then, a novel tagging scheme is proposed to convert
the joint extraction problem into a sequence labeling prob-
lem [17], which is usually solved by RNNs-based decoding
strategies. Yet, this tagging scheme is difficult to handle mul-
tiple relationships, which are relatively rare in many datasets.
Therefore, Bekoulis et al. [8] propose a multihead mechanism
to support the prediction of multiple relationships. Compared
to these approaches that adopt either RNNs or CNNs-based
architecture, our model consists of cascaded attention units
that combine bidirectional LSTM (BiLSTM) with multihead
attention [18] to better capture correlations between any two
modal instances despite their relative distance.

B. Label-Space Information

Recently, label information has been applied to NLP tasks
and achieves ideal results. Specifically, label knowledge has
been exploited in the text classification task [19]. Moreover,
Cui and Zhang [20] introduce label embeddings to the NER
task. However, label-space information has not been carefully
studied in joint entity and RE. Prior approaches [6], [8] exploit
a naive way, such as feature concatenation to utilize coarse-
grained labels. In contrast, we aim to model dense cross-modal
interactions over token-label spaces, which delivers signifi-
cantly better performance.

C. Multimodal Learning

Multimodal learning is widely explored in computer vision
and natural language processing [21], [22]. A typical task is
a visual question answering (VQA) [23], which requires the
model to perform fine-grained semantic understanding of both
the image and the question. For example, Yu et al. [12] propose
a modular attention mechanism to capture the interactions of
multimodal instances (image and question). Inspired by recent
advancements in this field, we regard token and label spaces
as two different modalities and attempt to capture cross-modal
interactions between them.

D. Weighting Losses of Joint Models

Prior approaches to simultaneously learning joint models
use a native weighted sum of losses, where the loss weights
are uniform or manually tuned. Bekoulis et al. [8] and
Li et al. [24] add the two parts NER and RE of the loss
directly as the final loss. Li et al. [9] introduce parame-
ter λ to control the tradeoff between the two objectives.
Kendall et al. [13] propose a principled approach to multitask
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Fig. 2. Overall flowchart of CMAN. Tokens and labels are first represented as distributed representations from multiple perspectives. Then, self-aware token
features and label information are obtained in the first-phase prediction. Finally, in second-phase prediction, a deep network architecture based on two attention
units is then designed to utilize gold label information during training and predicted labels at inference time. A CRF [15] and a multihead mechanism [8]
are also used to predict entities and their relations in second-phase prediction. T and L denote token and label, respectively. (a) Distributed representation in
token-label spaces. (b) Dynamically modeling dense cross-modal interactions.

deep learning, which weighs multiple loss functions by con-
sidering the homoscedastic uncertainty of each task and make
a good effect on image recognition. In this article, we try to
introduce the homoscedastic uncertainty of NER and RE to
weighting losses.

III. PROPOSED MODEL

In this section, we introduce the dynamic CMAN in detail,
which is shown in Fig. 2. We first obtain fixed-dimensional
representations of token and label from different perspec-
tives (see Section III-A). Then, we design a BSA unit
and a BLA unit (see Section III-B). These two units are
built to explicitly leverage token-label spaces information for
modeling cross-modal interactions (e.g., token-to-token and
label-to-token). After that, we adopt several BSA units to
extract self-aware token features and a conditional random
filed (CRF) [15] to predict entities labels in first-phase pre-
diction (see Section III-C). Moreover, in second-phase pre-
diction, a dynamic network architecture based on these two
units is carefully designed to utilize gold label informa-
tion during training and predicted labels at inference time,
and another CRF and a multihead mechanism [8] are used
to predict entities and their relations (see Section III-D).
Finally, we introduce homoscedastic uncertainty [13] to
automatically weighting the losses of two-phase prediction
(see Section III-F).

A. Representations in Token-Label Spaces

As mentioned above, sequence tokens and tagging labels are
viewed as two different modalities and, therefore, can be rep-
resented with different distributed representations. In the fol-
lowing, we will present how to construct these representations.

1) Token Representations: Word embeddings are used to
map discrete words into continuous input vectors. Given a
sentence containing n words, we map each token in the
sentence to a real-valued embedding to express its seman-
tic and syntactic meaning. Besides, we also utilize charac-
ter embeddings, which is obtained by encoding character
sequences with a BiLSTM. Then, the input of each token is
a concatenation of character embeddings, word embeddings,

and ELMo embeddings [25]. In this way, a sequence of input
vectors X ∈ R

n∗dw can be obtained, where dw is the token
embedding dimension.

2) Label Representations: We adopt the Beginning, Inside,
Outside (BIO) encoding scheme for NER, as illustrated
in Fig. 1. Motivated by Miwa and Bansal [6], tagging labels
are represented with randomly initialized vectors that are
fine-tuned during training, thus yielding a sequence of label
vectors L ∈ R

n∗dl , where dl is the label embedding dimension.
Notice that ground-truth labels are used only during training,
while predicted labels are utilized at inference time (see more
details in Section III-E).

B. Two Basic Attention Units

We first present a general architecture that contains BiL-
STM and multihead attention for encoding and attending any
arbitrary sequence. Then, we build two attention units based
on this architecture to capture dense correlations among token-
label spaces, namely, a BSA unit and a BLA unit.

General Architecture: BiLSTM is superior in build con-
textualized representations for various NLP tasks, as shown
in [11]. Hence, we utilize BiLSTM as the basic encoding com-
ponent. Given a sequence of input vectors X = [x1, . . . , xn],
a BiLSTM can be used to output hidden representations
H ∈ R

n∗2d as

−→
ht = −−−→LSTM(xt ,

−−→
ht−1) (1)←−

ht = ←−−−LSTM(xt ,
←−−
ht+1). (2)

Then, outputs of the forward and backward LSTM are
concatenated at each timestep to get the final LSTM output

ht =
[−→

ht ;←−ht

]
. (3)

Multihead attention [18] has proven to be effective for
capturing long-range dependencies by explicitly attending to
all positions. Therefore, we apply the multihead attention
as the basic attending component for capturing arbitrary
correlations. Typically, scaled dot-product is chosen as the
similarity scoring function in multihead attention mechanism.
Given input queries Q ∈ R

n∗d , keys K ∈ R
n∗d , and values
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Fig. 3. BSA: it is composed of a BiLSTM layer and a self-attention layer,
which aims to model intramodal interactions across different tokens.

V ∈ R
n∗d , the matrix of outputs is computed using the

following equation:

Attention(Q, K , V ) = softmax

(
QK T

√
d

)
V . (4)

Multihead attention allows the model to jointly attend to
information from different representation subspaces at differ-
ent positions. It first maps the matrix of input vectors to query,
key, and value matrices by using different linear projections.
Then, z parallel heads are employed to perform attention
operation in different parts of channels

headi = Attention
(

QW Q
i , K W K

i , V W V
i

)
(5)

T = Concat(head1, . . . , headz)W o (6)

where W Q
i ∈ R

d∗d/z , W K
i ∈ R

d∗d/z , W V
i ∈ R

d∗d/z , and
W o

i ∈ R
d∗d are trainable parameter matrices. Finally, a residual

connection [26] along with layer normalization [27] is applied
on H and T to produce the final output features

O = LayerNorm(T + Q). (7)

1) BiLSTM-Enhanced Self-Attention: The BSA unit
[see Fig. 3(a)] is designed to model token-to-token self-
correlations. Taking one group of input token features
X = [x1, . . . , xn], the BiLSTM is first used to capture rich
contextual information over token space. Next, the multihead
attention receives the encoded hidden representations
H = [h1, . . . , hn], further learns the pairwise relationship
between the paired sample 〈hi , h j〉 within H , and, finally,
outputs attended output features by weighted summation
across all instances. In summary, the computation of BSA
unit can be defined as X̂ = BSA(X).

2) BiLSTM-Enhanced Label-Attention: The BLA unit
(see Fig. 4) is capable of modeling intermodal interactions
from label space to token space. It takes two groups of features
X ∈ R

n∗dw and L ∈ R
n∗dl as inputs. The BiLSTM component

is first used to encode label features as L̃ = BiLSTM(L).
Next, the BLA unit models the pairwise relationship between

Fig. 4. BiLSTM-enhanced interattention (BIA): it contains a BiLSTM layer
and an interattention layer, which is used to model intermodal interactions
between label space and token space.

each paired sample 〈xi , l̃i 〉 within X and L̃. Notice that we set
token features X as query and set encoded label features L̃ as
key and value so that each token can be fused with relevant
label information. The calculation of the BLA unit can be
summarized as X̃ = BLA(X, L).

C. First-Phase Prediction

Since there is no label information during entity recognition,
we first pass token features X into several BSA units in a
recursive manner

Xi = BSAi (Xi−1) ∀i ∈ [1, m] (8)

where X0 is the set as X and m is the number of BSA units.
Then, based on the extracted self-aware token features,

we predict the entity by a conditional random field (CRF) [15].
Take self-aware token features Xm = [xm

1 , . . . , xm
n ] as inputs

and a sequence of predicted taggings A = [a1, . . . , an] as
outputs. Let A′ denote an arbitrary label distribution sequence
(i.e., BIO tagging scheme); the probability of the label
sequence A can be calculated using a softmax function

Pr(A|Xm) =
∏n

i=1 ϕn(an−1, an, Xm)∑
a′∈A′

∏n
i=1 ϕn

(
a′n−1, a′n, Xm

) (9)

where ϕn(an, an−1, L) = exp(Wn Xm + bn) is the potential
function and Wn and bn are the weight vector and bias,
corresponding to label pair (an−1, an), respectively.

D. Second-Phase Prediction

Modeling dense cross-modal interaction learning (token-
to-label) is only available in RE in one phase NER. Since
extraction of entities in first-phase can provide the predicted
label information, we, therefore, present a novel second-phase
prediction to dynamically control label feature contributions
and model dense cross-modal interaction learning in NER and
RE by feeding input features into a deep network that contains
carefully designed cascaded attention units. Finally, we employ
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another CRF and a multihead mechanism [8] to predict entities
and their relations.

1) Label Gate: Similar to previous work [6], [8], our
model uses the entity tags as input to relation classification
by learning label embeddings during inference. However,
the entity recognition results are not always correct since
they are predicted by the model during inference. Especially,
for the dataset with the poor NER effect, the problem is
particularly serious. Therefore, it is important to incorporate a
gate to dynamically control the contribution of label features.
Following the practice in previous work [28]–[30], we design
a label gate by combining the information from the above self-
aware token features Xm and encoded label representations L̃.
We replace encoded label representations L̃ with upade label
representations L̃ ′ in the BLA unit, which can be calculated
as follows:

k = σ(Wx Xm +Wl L̃ + bl) (10)

L̃ ′ = k L̃ (11)

where Wl and Wx are parameters. σ is the sigmoid activation
function.

2) Dense Cross-Modal Interaction Learning: Take the
extracted self-aware token features Xm and label features L
as inputs, and utilize a BLA unit to obtain initial label-aware
token representations as

X̃1 = BLA1(Xm, L). (12)

Next, we apply a concatenation-style residual connec-
tion [26] on previous input and output token features and
further use another BiLSTM to fuse their semantic meanings

X̃2 = BiLSTM([Xm; X̃1]). (13)

Finally, taking X̃2 and L as inputs, we apply another BLA
unit to capture deep cross-modal correlations to form the final
label-aware token features as

X̃3 = BLA2(X̃2, L). (14)

Now, X̃3 is capable of capturing rich cross-modal interac-
tions and is suitable for the task of entity recognition and
relation classification.

3) Entities-Relations Prediction: Due to considering the
interaction between each token and each tagging label in entity
recognition, we adopt another CRF to extract the final entity.
Taking fusing representation X̃3 as inputs and a sequence of
predicted taggings Ã = [ã1, . . . , ãn] as outputs. Let Ã′ denote
the set of tagging labels (i.e., BIO scheme); the probability of
the tagging sequence can then be calculated as follows:

Pr(Ỹ |X̃3) =
∏n

i=1 ϕ(ãi−1, ãi , X̃3)∑
ã′∈ Ã′

∏n
i=1 ϕ

(
ã′i−1, ã′i , X̃3

) (15)

where ϕ(ãi−1, ãi) is the transition score from ãi−1 to ãi

calculated by exp(W̃ϕ X̃3 + b̃ϕ), and W̃ϕ and b̃ϕ are trainable
weight and bias.

For RE, we utilize the multihead mechanism for predicting
relation, of which details can be found from [8]. Suppose that
fusing features X̃3 = [x̃3

1, . . . , x̃3
n ] are given as inputs, and

C is a set of relation labels. The idea of this mechanism is

to predict a score for each tuple (wi , w j , ck), where wi is
the head token, w j is the tail token, and ck denotes the kth
relation between them. Note that each pair of tokens 〈wi , w j〉
can have multiple heads, where each head computes a score
for one relation. We calculate the score between wi and w j

given a relation ck as follows:
s
(
x̃3

i , x̃3
j , ck

) = Vk tanh
(
Uk x̃3

i +Wk x̃3
j + bk

)
(16)

where Vk ∈ R
d̃ , Wk ∈ R

d̃∗2d , Uk ∈ R
d̃∗2d , and bk ∈ R

d̃

are parameters for the kth relation, and d̃ is the intermediate
hidden size. Next, the probability of token wi selected as the
head of token w j with the relation ck is calculated as

Pr(head = wi , relation = ck |w j)

= σ
(
s
(
x̃3

i , x̃3
j , ck

))
(17)

where σ stands for the sigmoid function.

E. Training and Inference

During training, we optimize the parameters of the model
by minimizing the following conditional likelihood for NER:

L1st-ner = −logPr(Y |Xm) (18)

L2nd-ner = −logPr(Pr(Ỹ |F)). (19)

As for RE, the cross-entropy loss is applied for training

Lre =
n∑

j=1

n∑
i=1

o∑
k=1

−logPr(head = wi relation = ck |w j) (20)

where o is the number of relations. For the joint entity and
RE task, we calculate the objective as

L joint(w; θ) = Lre + L1st-ner + L2nd-ner (21)

where w refers to tokens and θ denotes model parameters.
Since gold NER tagging information is only available during

training, we, therefore, use pseudolabels predicted by the first
phase at inference time.

To directly compare with previous works, we also apply
adversarial training (AT) [8], which can be used to improve
the robustness of neural models by adding small perturbations
to training data

Lfinal = Ljoint(w; θ)+ Ljoint(w + ηadv; θ) (22)

where ηadv is the worst case perturbation.

F. Weighting Loss With Homoscedastic Uncertainty

Our model has multiple objectives (L1st-ner,L2nd-ner,
and Lre). The naive approach to combining multiobjective
losses would be to simply perform a weighted linear sum of
the losses for each individual task [31], [32]

Ljoint =
∑

i

wiLi . (23)

However, there are a number of issues with this method.
Namely, model performance is extremely sensitive to weight
selection, wi . These weight hyperparameters are expensive
to tune, often taking many days for each trial. Therefore,
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it is desirable to find a more convenient approach that is
able to learn the optimal weights. In Bayesian modeling,
homoscedastic uncertainty is aleatoric uncertainty that is not
dependent on the input data. It is not a model output, rather
it is a quantity that stays constant for all input data and varies
between different tasks. It can, therefore, be described as task-
dependent uncertainty [13]. In our joint framework, the task
uncertainty captures the relative confidence between tasks,
reflecting the uncertainty inherent to the classification task.

In this section, we derive a joint model loss function with
homoscedastic uncertainty. We exploit the idea of homoscedas-
tic uncertainty [13] as a way to learn a relative weighting
automatically from the data and is robust to the weight
initialization. Specifically, we generate three model outputs
that are token representation for the first-phase NER and
token-label fusion representation for the second-phase NER
and RE. Therefore, we assume the model’s observation noise
parameter σ1, σ2, and σ3 so-called homoscedastic uncertainty
terms, which can capture how much noise we have in the
outputs. We proceed here directly to the loss that is in our
case given as Ljoint(w; θ) = L′re +L′1st-ner +L′2nd-ner instead of
(21). Here,

L′re =
1

σ 2
1

Lre(w; θ)+ logσ 2
1 (24)

L′1st-ner =
1

σ 2
2

L1st-ner(w; θ)+ logσ 2
2 (25)

L′2nd-ner =
1

σ 2
3

L2nd-ner(w; θ)+ logσ 2
3 . (26)

We can notice that the model parameters θ (mainly weight
parameters) are inversely proportional to homoscedastic uncer-
tainty terms σ1, σ2, and σ3. As the noise decreases, we can
see that the weight of the respective objective increases.
logσ 2

1 , logσ 2
2 , and logσ 2

3 act as a regularizer to avoid the
trivial solution. This is similar to the concept introduced by
Kalervo et al. [33] to improve the effect of image recognition
classifiers. This is because it is more numerically stable
than regressing the variance, σ 2, as the loss avoids any
division by zero. The exponential mapping also allows us to
regress unconstrained scalar values. The main advantages of
this method are that the difficult, time-consuming, and very
expensive steps of tuning the weights by hand can be replaced.

IV. EXPERIMENTS

A. Dataset

To evaluate the performance of our model, we conduct
experiments on three datasets: 1) the CoNLL’04 dataset with
entity and relation recognition corpora [34]; 2) adverse drug
events (ADEs) [35]; and 3) DREC dataset [36]

CoNLL04: This dataset contains sentences with annotated
named entities and relations extracted from news articles.
We use the splits defined by Gupta et al. [37] and Eberts
and Ulges [38]. There are four entity types in the dataset
(“Location,” “Organization,” “Person,” and “Other”) and five
relation types (“Kill,” “Live in,” “Located in,” “OrgBased in,”
and “Work for”).

ADE: The ADE dataset aims to extract two kinds of entities
(“Drugs” and “Diseases”) and relations about which drug is
associated with which disease. It consists of 4272 sentences
and 6821 relations extracted from medical reports that describe
the adverse effects arising from drug use. To directly compare
with previous works, we evaluate our model using tenfold
cross validation similar to prior approaches on the ADE
dataset [8], [24].

DREC: The DREC dataset contains sentences with anno-
tated named important entities of a property (e.g., floors
and spaces) from classifieds. There are nine entity types
in the dataset (“Neighborhood,” “Floor,” “Extra building,”
“Extra Invalid,” “Field,” “Space and Property,” “Other,” and
“Subspace”). Also, there are two relation classes “Part-of ”
and “Equivalent.” Following Bekoulis et al. [36], we also use
70% for training, 15% for validation, and 15% as test set.

We adopt standard Precision (Prec), Recall (Rec), and
F1 score to evaluate the model. We use the strict evaluation:
the boundary and type of extracted entities should be both cor-
rect for NER; named entities and the type of their relationships
should be both correct for RE.

1) Implementation Details: We utilize the 50-D word
embeddings used in [36], which are pretrained on Wikipedia,
for the CoNLL04 corpus. For the ADE dataset, we used 200-D
embeddings used by Bekoulis et al. [36] and trained on a
combination of PubMed and PMC texts with texts extracted
from English Wikipedia [36]. Finally, we use the 128-D
word2vec embeddings used by Bekoulis et al. [36] trained on
a large collection of 887k Dutch property advertisements 7 for
the DREC dataset. We regularize our network using dropout
with a rate tuned on the development set (the dropout rate
is 0.2 for embeddings and 0.1, 0.3, and 0.3 for BiLSTM on
three datasets, respectively). We utilize two BSA units in the
first phase (m = 2) and set the dimensionality of the hidden
size d as 128. We choose 25 as the dimensionality of label
embeddings dl . The size of character embeddings is 128, while
the dimensionality of ELMo [25] is 1024. The Adam optimizer
with a learning rate of 0.0005 is used to optimize parameters.
The training takes 180 epochs for convergence. For a fair
comparison, all experiments are implemented in Tensforflow
and conducted using a GeForce GTX 1080Ti with 11-GB
memory.

B. Quantitative Results

In this section, we present the performance of different
models on three datasets.

CoNLL04: For the CoNLL04 dataset, we compare the
proposed model with several competing approaches and show
the results in Table I. It can be seen that our model achieves
state-of-the-art performance on entity recognition and relation
classification by obtaining 91.72 and 73.46 F1, respectively.
Compared with prior competing SpERT method [38] that relies
on pretrained language model (BERT) [42], our approach
gets absolute F1 improvements of 2.78% and 1.99% on NER
and RE, respectively. We find even stronger performance
increases with respect to NER (+8.11%) and RE (+11.51%)
compared to the multihead + AT baseline [8], which uses
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TABLE I

COMPARISON OF OUR METHOD WITH OTHER COMPETING
APPROACHES IN TERMS OF F1 SCORE ON THE CONLL04 DATASET.
BEKOULIS et al. [8]2, LI et al. [9]4, EBERTS AND ULGES [38]5,

MIWA AND SASAKI [39]1, AND TRAN AND KAVULURU [40]3.
RESULTS WITH ∗ INDICATE THAT THE STUDY APPLY BERT

AS THEIR CORE MODEL. ALL BASELINE RESULTS ARE

OBTAINED FROM THEIR ORIGINAL PAPERS

TABLE II

PERFORMANCE OF OUR METHOD AND OTHER COMPETING APPROACHES

IN TERMS OF F1 SCORE ON THE ADE DATASET. BEKOULIS et al. [8]3

, LI et al. [24]2, EBERTS AND ULGES [38]5, TRAN AND
KAVULURU [40]4, AND LI et al. [41]1. RESULTS WITH ∗
INDICATE THAT THE STUDY APPLIES BERT AS THEIR

CORE MODEL. ALL BASELINE RESULTS ARE

OBTAINED FROM THEIR ORIGINAL PAPERS

feature concatenation for capturing interactions in token-label
spaces and applies a multihead mechanism for RE decoding.
The above results indicate the effectiveness of our method
and suggest that CMAN is able to model dense cross-modal
interactions for joint entity and RE.

ADE: Table II presents the performance comparison
between our approach and other competitive methods on the
ADE dataset. Compared to the latest SpERT model, our
approach only has a slight improvement (+0.87%) on NER.
However, it can be found that our proposed model significantly
outperforms SpERT by 2.1% F1 on RE. We think the reason
may be that the ADE dataset contains fewer relations than
CoNLL04, which is relatively easy for RE.

DREC: We also evaluate our model on the DREC dataset.
Table III presents the performance comparison between our
approach and other competitive methods. To fairly compare
with previous works, we only use word embedding following
Bekoulis et al. [8]. Compared to the latest multihead + AT
model, our approach only has a slight improvement (+0.92%)
on NER. However, it can be found that our proposed model
significantly outperforms multihead + AT by 2.54% F1 on
RE. The result strongly verifies that our method is compatible
with other domains and can achieve state-of-the-art results.

TABLE III

PERFORMANCE OF OUR METHOD AND OTHER COMPETING APPROACHES
IN TERMS OF F1 SCORE ON THE DREC DATASET. BASELINE

RESULTS ARE REPORTED IN [8]

C. Performance Against Entity Distance
Fig. 5 shows F1 scores of the baseline model and CMAN

under different entity distances on the CoNLL04 test set. Since
multihead + AT [8] adopts CRF and multihead mechanism for
NER&RE decoding, we, therefore, set it as the baseline model.
The CoNLL04 test set is split into three parts according to the
metric of entity distance. We measure distance by computing
the absolute character offset between the last character of
the first occurring entity and the last character of the second
mentioned entity, which is, henceforth, simply referred to as
entity distance. The results indicate that CMAN significantly
outperforms the baseline across different entity distances.
In particular, the F1 score of CMAN is nearly 18.18% greater
than that of the baseline for RE when the entity distance
is more than 20 characters. It demonstrates that CMAN has
a much greater advantage than the baseline in dealing with
entities that are far apart from each other. The reason is that
CMAN can detect token-level self-correlations by modeling
dense intramodal interactions among tokens via the proposed
BSA unit. Besides, we can notice that the effect of entity
distance on RE is significantly higher than the impact on NER,
likely due to that RE relies more on finding relevant distant
entities.

D. Performance Against Sentence Length

To investigate the influence of sentence length, we analyze
the performance of the baseline model and CMAN under
grouped sentence lengths on the CoNLL04 test set, which
is shown in Fig. 6. Similarly, the multihead + AT model is
used as the baseline. We partition the sentence length into
four groups ([0–19], [20–34], [35–49], [≥50]). We can observe
that CMAN performs way better than the baseline under dif-
ferent sentence lengths. Moreover, the improvement achieved
by CMAN is further enhanced when the sentence length
consistently increases. In particular, CMAN outperforms the
baseline by 11.06% and 22.03% F1 scores for NER and RE,
respectively, when the sentence length is large than 50. These
results demonstrate that CMAN is more effective in terms of
long sentences. It also verifies that our model can capture the
global dependencies of the whole sentence.

E. Performance Against Training Data Size

To explore the effectiveness of different training data sizes,
we analyze the performance of our CMAN model and baseline

1https://github.com/bekou/multihead_joint_entity_relation_extraction
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Fig. 5. Comparison of the baseline and CMAN under different entity
distances on the CoNLL04 test set. We use multihead + AT as the baseline.
We get the result of baseline by running the model source code.1

Fig. 6. Comparison of the baseline and CMAN under different sentence
lengths on the CoNLL04 test set, where multihead + AT is used as baseline.
We get the result of baseline by running the model source code.1

with respect to different training data sizes on the CoNLL04
dataset, which is shown in Fig. 7(a) and (b). We consider
five training settings (20%, 40%, 60%, 80%, and 100% of the
training data). Here, the multihead + AT model is also used
as the baseline. CMAN consistently outperforms the baseline
under the same amount of training data. When the size of
training data increases, we can observe that the performance
gap becomes more obvious. Particularly, using 60% of the
training data, the CMAN model is able to achieve an F1 score
of 86.82 and 62.91 on NER and RE, respectively, higher

Fig. 7. Comparison of our CMAN and baseline against different training
data sizes on CoNNL04 datasets, where multihead + AT is used as baseline.
We get the result of baseline by running the model source code.1 (a) Result
on NER. (b) Result on RE.

Fig. 8. Comparison of F1 scores with or without shared parameters on NER
and RE.

TABLE IV

PERFORMANCE OF CMAN UNDER DIFFERENT LABEL

REPRESENTATIONS ON THE DREC TEST SET

than the baseline trained on the whole dataset. These results
demonstrate that our model is more effective in terms of using
training resources.

F. Effectiveness of Joint Model

To analyze the influence of the joint model, we conduct
some comparative experiments by BSA units with shared para-
meters or without shared parameters, which is shown in Fig. 6.
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TABLE V

RELATIVE DECODING-TIME SPEED OF DIFFERENT MODELS ON JOINT TASKS

TABLE VI

PERFORMANCE OF CMAN UNDER DIFFERENT NEURAL
NETWORKS ON THE CONLL04 TEST SET

As can be seen from Fig. 8, without shared parameters hurts
the performance: the F1 score on NER and RE decreases
significantly by 1.6% and 13.78%, respectively. These results
indicate that the joint model can simultaneously learn NER
and RE and further promotes each other. Therefore, our joint
model can represent both entities and relations with shared
parameters in a single model.

G. Effectiveness of Label Gate

In order to analyze the influence of the label gate, we
evaluate our model with a label gate or without a label gate
on the DREC test set. To make the comparison fair, we set all
hyperparameters unchanged that only feed the model with
different encoded label representations. The results are shown
in Table IV. We replace the encoded label representations
L̃ ′ with upade label representations L̃ and find that the
performance increase to 82.96 and 55.66 (+0.94% and 1.43%)
F1 on NER and RE, respectively. These results indicate that
our model can control label feature contributions, especially
when much unincorrect label information hinders learning.

H. Performance Against Neural Networks

To analyze the influence of different neural networks,
we conducted experiments (compared with LSTM, GUR, and
BiGRU) on the CoNLL04 dataset, as shown in Table VI.
It can be seen that CMAN (BiLSTM) achieves the best
performance on entity recognition and relation classification
by obtaining 91.72 and 73.46 F1, respectively. Compared
with LSTM and GUR, BiLSTM and BiGRU have stronger
performance increases with respect to NER and RE. The
reason is that we can efficiently make use of past features
(via forwarding states) and future features (via backward
states) for a specific time frame [43]. Moreover, BiLSTM
slightly increases by 0.84% and 1.3% on NER and RE,
respectively, compared to the BiGRU. We think the reason
may be that BiLSTM has more parameters and can provide
better semantic representations of the token.

I. Performance Against Efficiency

To explore the efficiency of our model, we conducted
experiments of inference time on all datasets. Table V lists

TABLE VII

ABLATIONS ON THE CONLL04 DATASET

the relative decoding time on three of the test sets compared
to the multihead + AT. To fairly compare with the baseline
model, we report the decoding time using the same batch size
for each method. As we can see, multihead + AT runs 1.62,
1.75, and 1.82 times faster than our CMAN on three datasets,
respectively. The reason is that the used multihead attention
module is very time-consuming. However, when we use man-
ual weighting losses, the time consumed is 12, eight, and ten
times than multihead + AT on three datasets, respectively. It is
worth noting that time consumed by manual weighting losses
is random. Moreover, our CMAN achieves the best F1 score
results than the baseline model and CMAN-Homoscedastic
Uncertainty model.

J. Ablation Study

We conduct an ablation study to investigate the effectiveness
of our attention units and network architecture in Table VII.
First, since the BiLSTM layer in BSA is a necessary com-
ponent to encode tokens, we only remove the self-attention
module to perform the ablation. We can observe that the
F1 score drops by 1.71% and 3.48% for NER and RE
tasks, respectively, indicating that self-attention is critical for
capturing self-correlations among tokens. Second, we ablate
the BLA unit, use self-aware token features for both tasks, and
find that the performance slightly decreases, showing the bene-
ficial effect of incorporating label-space information. Deleting
both attention units leads to further worse results on NER
(−1.86%) and RE (−4.25%), which suggests that modeling
dense cross-modal interactions plays a vital role in joint learn-
ing. After that, to further investigate the influence of weighting
losses, we remove homoscedastic uncertainty in NER and
RE and lead to further worse results on NER (−0.5%) and
RE (−0.7%) on the CoNLL04 dataset, which suggests that
weighting losses are beneficial for our model. Finally, to test
the network architecture, we replace BiLSTM with multilayer
perceptron (MLP) and find that the performance significantly
drops to 90.79 and 72.16 F1 scores, implying the importance
of building contextualized representations.
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V. CONCLUSION

In this article, we propose a deep CMAN for the task of joint
entity-RE. The network aims to capture dense cross-modal
interactions by leveraging NER label information, where two
basic attention units are proposed to model token-to-token
and label-to-token correlations synergistically. Particularly,
compared with our initial conference version, this article can
dynamically control label feature contributions and take into
account the interactions between token and label features in the
extraction of entities and their relations. Moreover, we intro-
duce homoscedastic uncertainty to automatically weighting
the losses of two-phase Prediction. Finally, we evaluate the
proposed method on CoNLL04, ADE, and DERC datasets.
The results show that CMAN achieves new state-of-the-art
performance compared to other competing approaches.
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