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Privacy vs. Efficiency: Achieving Both Through
Adaptive Hierarchical Federated Learning

Yeting Guo , Fang Liu , Tongqing Zhou , Zhiping Cai , and Nong Xiao

Abstract—As a decentralized training paradigm, Federated
learning (FL) promises data privacy by exchanging model pa-
rameters instead of raw local data. However, it is still impeded
by the resource limitations of end devices and privacy risks from
the ‘curious’ cloud. Yet, existing work predominately ignores that
these two issues are non-orthogonal in nature. In this article, we
propose a joint design (i.e., AHFL) that accommodates both the
efficiency expectation and privacy protection of clients towards
high inference accuracy. Based on a cloud-edge-end hierarchical
FL framework, we carefully offload the training burden of devices
to one proximate edge for enhanced efficiency and apply a two-level
differential privacy mechanism for privacy protection. To resolve
the conflicts of dynamical resource consumption and privacy risk
accumulation, we formulate an optimization problem for choosing
configurations under correlated learning parameters (e.g., itera-
tions) and privacy control factors (e.g., noise intensity). An adaptive
algorithmic solution is presented based on performance-oriented
resource scheduling, budget-aware device selection, and adaptive
local noise injection. Extensive evaluations are performed on three
different data distribution cases of two real-world datasets, using
both a networked prototype and large-scale simulations. Experi-
mental results show that AHFL relieves the end’s resource burden
(w.r.t. computation time 8.58% ↓, communication time 59.35%↓
and memory consumption 43.61%↓) and has better accuracy
(6.34%↑) than 3 typical baselines under the limited resource and
privacy budgets. The code for our implementation is available at
https://github.com/Guoyeting/AHFL.

Index Terms—Distributed machine learning, edge computing,
federated learning, privacy protection.
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Fig. 1. Resource and privacy concerns in FL.

I. INTRODUCTION

THE evolving mobile computing technologies have gen-
erated tremendous data at the pervasive smart devices.

Its marriage with advanced AI algorithms has nurtured a wide
spectrum of applications in healthcare, mobile social networks,
smart cities, etc. However, users’ awareness of personal data
privacy significantly hinders the centralized gathering and ex-
ploitation of such fruitful data. Recently, Federated Learning
(FL) has ascended to the spotlight by providing a solution
for distributed data owners to collaboratively learn a model in
parallel, while keeping their sensitive data locally [1], [2]. In
fact, FL has been applied in products for intelligent traffic and
virtual assistants [3].

The modern FL architectures typically adopt a cloud-end
framework. Wherein, local training and global aggregation are
performed alternately and iteratively at the end and cloud sides,
respectively, for model optimization. However, as shown in
Fig. 1, a practical implementation of such a framework will
unavoidably face the concerns of resource and privacy raised by
the two parties.

Relatively ‘Weak’ End Devices. The training of complex
models containing multiple multi-unit network layers can easily
drain the on-board CPU and even impact the running perfor-
mance of clients’ mobile devices [4]. Meanwhile, the network
environments, especially the uploading link, of end devices
fluctuate dynamically, so frequent local model uploading is
communication inefficient [5].

‘Honest-but-Curious’ Cloud. The cloud honestly aggregates
the model updates of end devices, but out of curiosity, is still
capable of recovering the raw training data, thus inferring the
sensitive information from users [6].

As two major hindrances to FL, the above two issues are
widely, while independently, studied in existing work. On one
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hand, some have proposed to optimize the schedule of local
training and global communication tasks to improve resource
utilization [7], [8], [9]. Also, dedicated DNN compression
techniques are proposed to reduce the communication burden
during computation offloading [10]. On the other hand, to en-
hance privacy, homomorphic encryption, multi-party computa-
tion and differential protection (DP) mechanisms are widely
applied [11]. Wherein, DP is more favored for lightweight
computation [12], [13], while its privacy guarantee will change
dynamically given various factors in FL, such as the communica-
tion rounds. We argue that efficiency and data privacy of FL are
in fact non-orthogonal from the perspective of model training.
Purely pursuing efficiency may enlarge the threat surface of local
data, while the incurred overhead or noise of privacy protection
would further degrade FL’s efficiency and performance.

In this paper, we investigate the benefit of involving edge
computing [14] to relieve the resource and threat concerns
simultaneously. For this, we first propose a cloud-edge-end
hierarchical FL framework. Under such a framework, the end
is only responsible for data collection and partial model training
task; the edge (e.g., a base station), for its physical proximity and
relatively stronger computing capabilities, is involved to assist
the end for local model training based on model partition [15],
thus relieving the end’s computation. Meanwhile, we utilize
a two-level DP mechanism for privacy consideration in our
hierarchical FL system. First, we perturb the model updates
between the cloud and network edge (including the end device
and the edge server), to resist the cloud and external attackers
from identifying or even rebuilding the local training samples.
Besides, we propose to perturb the intermediate features [16]
from the end to the edge, which prevents privacy leakage during
the computation offloading. In this way, a full chain of privacy
protection can be constructed.

Yet, the integration of privacy protection into a hierarchical
framework is not that straightforward, as it seems to be, in
practice. The technical challenges are two-fold:
� To efficiently attain high inference accuracy, we need to

handle the optimal configuration searching problem for a
series of inter-correlated parameters. For the cloud, both
the resource schedule for local and global iterations and
the device sampling rate will impact the DP protection
strength. For the end devices, offloading decision and noise
intensity setting have to be made given resource overhead
and privacy constraints. It’s necessary to coordinate their
internal connection carefully.

� The optimal configuration varies with the resource ex-
ploitation and the risk accumulation caused by overlapping
participants, and is heterogeneous under different data
distributions. As a result, a generic and empirical setting is
not adequate. It’s necessary to dynamically accommodate
the constraints and optimize the model.

Given these challenges, we further formulate the model op-
timization problem under both the resource budget and privacy
constraints, and propose an Adaptive control algorithm for the
above Hierarchical FL framework, AHFL. First, by monitoring
the resource consumption, as well as the distributed training
state in real-time, we adjust the resource allocation of local

training and global communication after each aggregation. In
this way, resource utilization is tuned for a better gain of model
performance improvement. Second, based on the scheduling, the
number of remaining aggregation rounds and the corresponding
privacy risk accumulation are estimated, which will guide the
adjustment of the device sampling rate. By doing this, the algo-
rithm finds the optimal critical point of both constraints. Third,
based on the updated global configuration and local privacy
constraint, an end device determines whether to offload the task
to the edge. It strikes to minimize the local resource consumption
by controlling the injected noise intensity.

In summary, our main contributions are listed as follows:
� We propose a cloud-edge-end FL system to satisfy the

efficiency expectation and privacy constraints of FL partic-
ipants in one shot. It exploits the hierarchical computation
resources to reduce the burden of end devices, and applies a
two-level DP protection mechanism to provide a full chain
of privacy protection.

� We propose an adaptive control algorithm for the hier-
archical system to minimize loss value under both the
quantified resource requirements and privacy constraints. It
learns system dynamics and training state in real-time, and
then dynamically adjust resource scheduling and privacy
configurations towards high inference accuracy.

� We implement a prototype for AHFL and conduct exten-
sive evaluations based on two real-world datasets. The
results demonstrate the performance superiority (w.r.t com-
putation time 8.58% ↓, communication time 59.35%↓,
memory consumption 43.61%↓ and inference accuracy
6.34%↑) of AHFL over other state-of-the-art approaches
(i.e., ltAdap [8], FLGDP [17], FEEL [18]).

This paper extends our preliminary conference version
FEEL [18] with the consideration of ‘curious’ cloud. Moreover,
in this paper, we design a novel adaptive control mechanism
for the hierarchical framework (see Section IV). It discusses
the correlation between the resource efficiency optimization and
privacy strengthening. And it achieves higher inference accuracy
than FEEL by dynamic adjustment.

II. RELATED WORK

In this section, we discuss the related work on resource
efficiency and privacy leakage under FL framework.

Efficient FL. To reduce the local training burden, Niu et al.
and Jia et al. designed federated submodel learning schemes
which allow the end to train only the related parts of the full
models [22], [23]. Edge computing [24], [25] proposes to lever-
age resources at the network edge to optimize computation task
execution. Motivated by this paradigm, FEEL offloads partial
FL computation task from the end to the edge server to alleviate
local computation pressure [18]. To reduce the communication
traffic, Jin et al. designed an online participant selection learning
algorithm to exclude unnecessary model updates [26]. Wang et
al. divided the devices into clusters and aggregated model param-
eter updates hierachically [7]. Some compression methods like
clipping and deduplication are also applied to reduce the com-
munication [27], [28]. These works empirically set a fixed global
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ARTS

aggregation frequency, that is, how many training iterations be-
tween two adjacent aggregations. They ignore the task schedul-
ing of local training and global aggregation, which may be hard
to converge the model under a certain resource budget. Wang et
al. dynamically controlled the relationship between the two FL
tasks to minimize the loss value in real time [8]. Li et al. sup-
ported flexible communication compression and balances the en-
ergy consumption of FL tasks [9]. However, these works still ne-
glect an important restriction (i.e., the privacy issue) while purely
pursuing efficiency may enlarge the threat surface of local data.

Privacy Issues of FL. Various attacks on the learning model
have been proposed [29]. Carlini et al. demonstrated individ-
ual training sample recovery by querying the language model
GPT-2 [30]. Song et al. analyzed the user-level privacy attacks
against FL [31]. Many researchers are committed to finding
corresponding solutions. They are mainly categorized into en-
cryption methods [11], [32], such as Homomorphic Encryption,
and perturbation methods, such as Differential Privacy (DP).
The former is always resource-consuming for mobile devices
to perform complex encryption and decryption operations. The
latter is relatively more applicable to network edge. DP has been
used in each stage of model learning, including data collection,
gradient computation, parameter uploading and result predic-
tion [33]. But DP may damage the model inference performance.
A trade-off between model utility and privacy protection is
required. Mao et al. proposed a DP-enhanced offloading strategy
to protect from the membership attack of the edge [16]. It
discusses the offloading task selection, and makes a balance
between resource consumption and model performance with pri-
vacy guarantees. Geyer et al. designed client sided DP preserving
federated optimization to hide clients’ contributions from the
attacker [17]. Hu et al. considered the device heterogeneity and
proposed a personalized FL scheme with DP [34].

Different from the above existing efforts, we accommodate
both the efficiency expectation and privacy requirements to-
wards high inference accuracy. Table I indicates a comprehen-
sive comparison with the state-of-the-arts from the role of system
entity, control function design and system performance. The

main differences are summarized as follows: 1) we design a
cloud-edge-end hierarchical FL system to improve efficiency,
and apply DP protection as close to the end as possible to
provide a full chain of privacy protection; 2) we argue that
the efficiency and data privacy of FL are non-orthogonal in
model optimization, and achieve a desirable trade-off among
the three performance metrics in FL by adaptively coordinating
the resource optimization and privacy protection operations.

III. PRELIMINARIES AND SYSTEM OVERVIEW

A. Preliminaries on FL

Generally, FL involves two entities, the cloud and the end. It
is essentially a circular execution of the following steps.

Step 1. The cloud initializes a global model if there is no
pre-saved model, the global model parameters in iteration t are
denoted asw(t). It randomly selects a subset of available devices
to send w(t).

Step 2. The device i initials the local parameters wi(t) via
w(t). Then it updates wi(t) with local dataset Di by stochastic
gradient descent algorithm. After a certain training iterations τ ,
the device i sends wi(t+ τ) to the cloud.

Step 3. The cloud aggregates these distributed wi(t+ τ) and
updates global w(t+ τ) by the FedAvg algorithm in [19].

In this paper, K is the number of global aggregation rounds,
and T = K · τ refers to the total number of iterations.

B. Concerns on Resources and Privacy

Resource Concerns. The end device independently trains the
local model in FL. Due to the limited computing capability, it is
difficult to train complex models efficiently. We applied the same
model in a laptop and a raspberry pie respectively (details in Sec-
tion V-A), and evaluated the local training time. We found that
the time for the raspberry pie increased by 50× than the laptop.
Parameter communications are also time-consuming. For ex-
ample, the wide-used Resnet-50 model contains approximately
100MB parameters [9]. It conflicts with limited communication
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Fig. 2. Workflow of training task offloading.

resources at the end and causes bandwidth bottlenecks in core
networks.

Threat Model. There exist various attacks towards FL. In this
paper, we hold the security assumption that the cloud is honest-
but-curious. It honestly aggregates wi(t), but also attempts to
infer sensitive information from wi(t). The outside adversary
can also perform the inference attack by intercepting their com-
munications. For example, a certain commodity corresponds to
a specific unit of the embedding layer. It’s identifiable whether
one user has purchased the commodity through the updates on
the unit [35].

It’s challenging to balance the two concerns. Existing resource
optimization strategies often neglect the fact that raw parameters
contain privacy, and some of them even enlarge the privacy
leakage, resulting in unavailability, while additional security
operations increase resource costs.

C. Our Hierarchical FL Design

In view of the two concerns, we propose a cloud-edge-end
Hierarchical FL system (HFL). It optimizes the classical FL
with the following designs.

1) Edge-Assisted Training Optimization: We extend the ori-
gin FL with the assistance of edge computing. The core idea is to
offload computation tasks to some network nodes to alleviate the
above resource concerns. These nodes are called edge servers,
which are usually close to the end and have strong computing
capabilities, such as base stations. The workflow is shown in
Fig. 2.

The end device i receives w(t) and τ from the cloud and
initializes the local wi(t) to w(t) (step 1-2). The device i splits
the model into two parts, shallow layers and deep layers (step 3).
Their corresponding model parameters are denoted asws

i (t) and
wd

i (t). The device sends wd
i (t) to the edge server in proximity,

and the edge server initials the deep network layers with wd
i (t)

(step 4). There are many model splitting strategies [18], [36].
They are compatible with our framework, and we will not discuss

the splitting strategy in detail. Then in the next τ iterations,
the end calculates the output of each batch d in the shallow
network layers (step 5). The output O is also called intermediate
features of the model. The device sends the perturbed features
DP1(O, δe) and the corresponding label(d) to the edge in turn
(step 6).

The edge regards the perturbed features as its input and
learns the deep layers through gradient descent (step 7). And
it also computes the gradient of loss function fi to the perturbed
features to assist the end to coordinate the shallow layers (step
8-9). After training, the edge sends wd

i (t) to the device, and
the device updates wi(t) with the updated ws

i (t) and wd
i (t)

(step 10-11). For global model aggregation, the device and the
edge send noised DP2(w

s
i (t)) and DP2(w

d
i (t)) to the cloud,

respectively (step 12-13). The function DP1 and DP2 would be
introduced later.

2) DP-Strengthen Privacy Preservation: For privacy en-
hancement, we apply a two-level DP protection mechanism. It
could maximize the data analytical availability and minimize the
chance of individual privacy leakage. Here we introduce some
related basics first.

DP: A mechanism M with domain D and range R satisfies
(ε, δ)-DP for two non-negative numbers ε and δ if for any pair
of adjacent datasets < d, d′ >, for any subset of outputs s ∈ R,
it holds that

Pr{M(d) ∈ s} ≤ eεPr{M(d′) ∈ s}+ δ (1)

Adjacent datasets are two subsets of D whose difference is
reflected in only one single record. ε indicates the privacy loss
of DP, also called privacy budget, and δ indicates the probability
that original ε-DP is broken. The smaller the value of ε, the
greater the probability of obtaining the same result for adjacent
datasets, and the smaller the risk probability that the attacker can
identify whether the single target record is in the dataset. We use
ε to quantify the privacy constraint in our subsequent adaptive
control design.

Gaussian Mechanism. To achieve (ε, δ)-DP, it builds a new
noised function M , which is the sum of the original query
function fqr and a random noise obeying normalized distribution
N(0, S2

f × σ2). Sf is the sensitivity of fqr, which means the
maximum difference between query results on adjacent datasets.

Based on the above design, we discuss two types of interac-
tions.

Task Offloading Between the Edge and the End. Considering
the medical scenario, some internal staff know the disease diag-
nosis result but also leak the patient’s physiological data from the
hospital private server for interest. Thus, the edge server could
also be honest-but-curious, that is, they honestly assist train
the model, but meanwhile they want to infer or even construct
user data information from the intermediate features [16], [37].
For the sake of security, the end perturbs O before sending
out. Specially, we count the maximum and minimum value of
each activation unit and compute the difference between the two
values, and calculate their difference as Sf . Based on the above
definition, we build function DP1, as shown in (2). σe denotes
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TABLE II
MAIN NOTATION DESCRIPTIONS IN OUR SCHEME

the noise intensity to the edge server.

DP1(O, σe) = O +N(0, S2
fσ

2
e) (2)

Transmitting model updates between the network edge (in-
cluding the edge and the end) and the cloud. wj

i denotes
the model updates of jth network layer in the end i. When
updating it to the cloud, we preprocess wj

i , that is, perform
L2-normalization to eachwj

i and scale it to an empirical value ζ.
We set ζ as the sensitivity in DP2, and function DP2 is defined
in (3). σc denotes the noise intensity to the cloud.

DP2(w
j
i ) = ζ × wj

i /‖ wj
i ‖+N(0, ζ2σ2

c ) (3)

IV. ADAPTIVE CONTROL ALGORITHM UNDER

MULTI-CONSTRAINTS

Efficiency and data privacy of FL are actually non-orthogonal.
In this section, we formulate their inter-correlation towards high
inference accuracy, and present our adaptive control algorithm
to the multi-constraint problem.

A. Problem Formulation

We first introduce the two main constraints, and then give the
optimization goal. Table II lists the main notations.

Resource Budget. ‘resource’ is a generic concept, which
could be computation or communication resources involved or
required in the task, for example, time and energy. The resource

budget is the upper limit of the sum of affordable resource cost
of the end device during participating in FL.

We introduceX = {x1, x2 . . . xK}1 indicating the offloading
decision. If xk = 1, it denotes that the model is offloaded in
round k. And it consumes coff units of resources for compu-
tation in each training iteration and boff for communication in
each aggregation. Otherwise, it denotes the end trains all network
layers at local. It consumes cloc and bloc for computation and
communication. Thus, the resource constraint is illustrated as

K∑
k=1

xk(coff · τ + boff ) + (1− xk)(cloc · τ + bloc) ≤ R (4)

Privacy Budget. We define that the privacy budgets of the
edge server and the cloud are εe and εc, respectively.2 The
end device sets the values of εe and εc based on its privacy
preference before participating in FL. According to the boost-
ing theorem in [12], to guarantee the (ε, δ)-DP, it follows
4
5exp(−(σε)2/2) ≤ δ. After i iterations, the guarantee would
get weakened to (H(ε, pb, i, δ

′), pbiδ + δ′)-DP, where δ′ > 0,
function H is described as

H(ε, pb, i, δ
′) = pbε

√
2i · ln(1/δ′) + pbiε(exp(ε)− 1) (5)

According to specific interaction scenarios in Section III-C2,
pb and i in the theorem have corresponding meanings. When
analyzing privacy during offloading, pb is the fraction of the
batch size b to the dataset size, i is the training iterations τ . While
analyzing privacy in model aggregation, pb is the sampling rate,
i is the aggregation rounds K. For other relevant parameters
(σ, ε, δ, δ′) in DP, we use subscript abbreviations to distinguish
(i.e., cloud and edge). ε0 is the initial value. Thus, the privacy
constraint is illustrated as

H(ε0, b/|Di|, τ, δ′e) ≤ εe (6)

H(ε0, s,K, δ′c) ≤ εc (7)

Optimization Goal. To obtain a global model with high ac-
curacy, we design to minimize the value of global loss function
F (w) under the above constraints. The definition of F (w) is
illustrated in (8). D = {D1, D2 . . . DN}. N is the number of
end devices.

F (w) =

∑N
i |Di|fi(w)
|D| (8)

We denote w∗ as the optimized parameters to minimize the
value of F (w), and denote w(T ) as the global parameters in
iteration T . We aim to minimize their gap. And we refer to
the approximation of the gap in [8], which is shown in (9).
η is the learning rate, ϕ is a constant control parameter, ρ is
the Lipschitz parameter of any fi(w) and F (w). And h(τ) is
a function describing the gap between the parameters obtained

1.For generality and interpretation, we use a fixed state of model splitting to
illustrate, that is, splitting the model into two fixed parts. Thus, xk is binary
indicating whether to offload the deeper part.

2.The end (e.g., medical wearable devices) faces different security threats
from two different entities (e.g., medical institutions and intelligent medical
alliances). In this paper, we assume that the two don’t collude and the end has
set up two privacy budgets for them.
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Fig. 3. Workflow of AHFL under both resource requirement and privacy
constraints.

from distributed and centralized training. The definition is given
in (10), where β is the smoothness parameter of any fi(w) and
F (w), and μ is the weighted average of {μ1, μ2, . . . μN} based
on their dataset size. Each μi follows (11).

F (w(T ))− F (w∗) ≤ 1

2ηϕT
+

√
1

4η2ϕ2T 2
+
ρh(τ)

ηϕτ
+ρh(τ)

(9)

h(τ) =
μ

β
((ηβ + 1)τ − 1)− ημτ (10)

‖ 	fi(w)−	F (w) ‖≤ μi (11)

Note that on the basis of the approximation of optimization
goal, we develop it with more careful designs on network edge
resource managing and privacy concerns. It strikes a more
challenging balance among efficiency, accuracy and privacy
in FL since the early depletion of any budget will lead to the
underutilization of another budget and the early termination of
training. In summary, our problem can be formulated as (12). To
avoid excessive parameter adjustment, we empirically set σe, s,
X , τ as adjustable variables and others as given constants.

min
τ,X,σe,s

1

2ηϕT
+

√
1

4η2ϕ2T 2
+

ρh(τ)

ηϕτ
+ ρh(τ)

s.t. (4), (6), (7) (12)

B. Algorithm Design

In this subsection, we design AHFL, which accommodates
both the resource and privacy budgets by embedding the follow-
ing three adaptive control algorithms (step 4-6 in Fig. 3) into the
hierarchical framework (step 1-3 in Fig. 3).

1) Performance-Oriented Resource Scheduling: To improve
the model performance, the cloud monitors the training state
and resource consumption of devices, and optimizes the resource
scheduling for FL tasks. The algorithm is shown in Algorithm 1.

Each device monitors its computation and communication
resource cost to estimate the value of ci and bi. When device

Algorithm 1: Performance-Oriented Resource Scheduling.

Input: R, R̄, Di, D, τmax, ρi, βi, fi(w(t)),	fi(w(t)), ci,
bi

Output: τ in next round
1: Calculate F (w(t)) based on (8);
2: Calculate the weighted average ρ, β and	F (w(t));
3: Estimate μi for each device i based on (11);
4: Calculate the weighted average μ;
5: Compute the optimized value of τ in (12) by linear

search of integers within [1, τmax];
6: while R̄+ ciτ + bi > R and τ > 0 do
7: τ ← τ − 1;
8: end while
9: return τ ;

i offloads the task to the edge server, ci and bi are essentially
estimated as coff and boff . Otherwise, they are estimated as
cloc and bloc. And the device reflects the distributed training
state via estimated ρi, βi, fi(w(t)),	fi(w(t)) when receiving
the global w(t). These information is shared with the cloud to
obtain F (w(t)), the weighted average of fi(w(t)) according to
(8) (line 1). The cloud estimates the global ρ, β,	F (w(t)) and
μ via averaging ρi, βi and 	fi(w(t)) weighted by |Di|/|D|,
respectively (line 2). Then it estimates μi based on (11) and cal-
culates the global μ (line 3-4). The cloud feeds these parameters
into the optimization function in (12), and finds the optimized
value of τ within the interval [1, τmax] via linear search (line 5).
More details of the scheduling optimality are in Appendix IV-B1,
available online. τmax is the preset upper bound of τ . After that,
the cloud checks the legality of τ in case of the exceed of the
budgetR (line 6-8). R̄ records the resource budget already spent.
At last, it returns τ for next round (line 9).

2) Budget-Aware Device Selection: We then integrate pri-
vacy concerns to the cloud into the above resource scheduling
optimization. Small τ indicates frequent aggregation, which
enlarges security risks from the cloud. We dynamically adjust
the device sampling rate with awareness of the resource budget
and privacy budgets of the cloud. The details are shown in
Algorithm 2.

First, the cloud accumulates the current spent privacy budget
ε̄0 in this round according to function H (line 1). Then it
estimates how many rounds can be executed with the new τ ,
which will consume the remaining resource budget (line 2). It
searches for the optimal s via linear search with search step γ.
The lower bound of s is smin. The optimal s is supposed to
make the spent budget R̄ and ε̄0 reach the total budget R and εc
respectively at almost the same time, in case of early termination
caused by lack of a certain type of budget (line 4-11). At last, s
is returned as the next sampling rate.

3) Adaptive Local Noise Injection: We further design an
adaptive local noise injection mechanism to minimize the end’s
resource consumption under the privacy constraint on the edge.
High τ indicates frequent task offloading, which may easily
break the constraint. Thus, before local training, the device
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Algorithm 2: Budget-Aware Device Selection.

Input: s, smin, εc, σc, δc, γ, R, R̄, τ , ci and bi
Output: s in next round
1: Accumulate ε̄0 with {σc, s, 1, δc} based on (5);
2: k̄ ← (R− R̄)/(ciτ + bi); // estimated remaining rounds
3: Initialize ε̄tmp ← ε̄0;
4: while not (ε̄tmp ≤ εc or s < smin) do
5: s← s− γ, ε̄tmp ← ε̄0;
6: Accumulate ε̄tmp with {σc, s, k̄, δc} based on (5);
7: end while
8: while not (ε̄tmp ≥ εc or s == 1) do
9: s← s+ γ, ε̄tmp ← ε̄0;

10: Accumulate ε̄tmp with {σc, s, k̄, δc} based on (5);
11: end while
12: return s

Algorithm 3: Adaptive Local Noise Injection.

Input: σe(min), σe(max), εe, τ , b, δe and γ′

Output: xk, σe

1: σe ← σe(min), xk ← 1;
2: Compute ε̄e with {b, σe, δe, τ} based on (5);
3: while ε̄e > εe do
4: if σe > σe(max) then
5: xk ← 0;
6: break;
7: end if
8: σe = σe + γ′;
9: Compute ε̄e with {b, σe, δe, τ} based on (5);

10: end while
11: return xk, σe

evaluates whether the task can be offloaded with a guarantee
to satisfy the privacy budget εe by controlling the strength of
injected noise σe. The algorithm is shown in Algorithm 3.

First, we set σe as the lower bound σe(min) and initial the
offloading decision xk as 1 (line 1). Then we compute spent
privacy budget ε̄e using the above function H with the received
τ and the current corresponding local configurations (line 2). ε̄e
may exceed the preset budget εe. In that case, it would decrease
the value of σe by search step γ′ constantly until it satisfies the
privacy constraints (line 8-9). Since the excessive noise makes
the model hard to converge, we set the highest threshold for
σe. If there is no σe within the preset interval satisfying the
privacy budget, xk would be 0 (line 4-7). At last, xk and σe are
returned to determine whether to offload and the noise intensity
if offloading.

C. Security Analysis

We apply a two-level DP-strengthen mechanism to perturb
the model parameters and the intermediate features, under strict
cloud and edge privacy budgets that abide by DP.

Specifically, the model aggregation procedure satisfies (εc,
δc)-DP. In each aggregation round, the cloud randomly selects
end devices for training at the sampling rate s, and devices

perturb their model parameters with noise intensity σc. The
maximum difference of model parameters between two devices
remains no greater than the sensitivity ζ inDP2. It strictly obeys
the Gaussian mechanism to satisfy DP. Algorithm 2 estimates
the spent privacy budget after k̄ rounds according to the boosting
theorem in [12]. It adjusts s for the future rounds to guarantee
that the spent budget is smaller than εc. If no appropriate s, the
FL process would be stopped. Thus, this procedure satisfies (εc,
δc)-DP.

The task offloading procedure satisfies (εe, δe)-DP. In each
local training iteration, the end device perturbs the interme-
diate features of each data batch with noise intensity σe. The
maximum difference of intermediate features between two data
samples remains no greater than the sensitivity Sf in DP1. It
also strictly obeys the Gaussian mechanism. Since each batch
is independent and satisfies the same DP, based on the parallel
composition theorem in [12], the entire dataset is protected by
the same DP protection strength. The privacy budget is accumu-
lated over τ iterations. Algorithm 3 adjusts σe to guarantee that
the accumulated privacy budget is still smaller than εe. Thus,
this procedure satisfies (εe, δe)-DP.

In summary, AHFL could handle the threat from the cloud
introduced in the threat model in Section III-B and resist the
curious edge server when utilizing the edge’s resource for train-
ing efficiency. Yet, we emphasize that AHFL is not designed to
handle, so would unfortunately fail in face of, more deliberate
security attacks from a) the collusion of the edge server and
the cloud, b) the malicious edge server that dishonestly feeds
back training gradients, and c) the malicious cloud who does
not comply with aggregation rules. This specifies the security
boundary of AHFL under honest-but-curious entities.

V. EVALUATION

In this section, we evaluate our system through extensive
experimental analysis to answer the following questions:

RQ1: Does our hierarchical FL framework relieve the end’s
resource burden?

RQ2: Does the adaptive control mechanism adjust relevant
settings under given resource budgets and privacy budgets to
maximize the performance of the training model?

A. Experimental Settings

Experiment Platform. We implement a simple networked
prototype system, as shown in Fig. 4. Raspberry Pies and a
Personal Computer (PC) emulate the resource-limited mobile
end device and the edge server, respectively. The Raspberry
Pies are equipped with 4 Cortex-A72 64@1.5GHZ and 4GB
memory. The PC is equipped with 4 Intel(R) Core(TM) i5-
4590@3.30GHZ and 8GB memory. The cloud has 20 Intel(R)
Xeon(R) E5-2660 v3@2.60GHz and 62GB memory. As for the
network connection, the Pies and the PC are in the same local
area network, and the network between the PC and the cloud is
the wide area network.

Dataset and Model Setting. We use CIFAR-10 and the original
MNIST dataset in our evaluation. CIFAR-10 contains images of
ten categories of items. Each category contains 60,000 images,

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:50:24 UTC from IEEE Xplore.  Restrictions apply. 



1338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 4, APRIL 2023

Fig. 4. Prototype of AHFL.

including 50,000 for training and the remaining 10,000 for
testing. MNIST consists of 70,000 images of handwritten digits,
of which 60,000 are for training and the remaining 10,000 are
for testing. We simulate three different data distribution cases
as follows. They reflect different degrees of Non-Independent
Identically Distribution. And we use two neural network mod-
els3 to train these datasets.
� Case 1: The training set is randomly and evenly distributed.

Each end has uniform but partial information.
� Case 2: The training set is distributed based on the data

labels. Each end has only partial data of a specific label.
� Case 3: The first half of the samples are randomly allocated

based on the sample index as in Case 1, and the second half
of the samples are randomly allocated based on the label
as in Case 2.

Baseline. We compare AHFL with the following baselines.4

The major differences reflect on the system structure, the flex-
ibility of task schedule and the consideration of extra privacy
risks of FL.
� CL [38], [39]: It refers to centralized learning. The cloud

center collects data from the end devices and then trains a
global model. It fails to provide any privacy protection.

� ltAdap [8]: It’s general cloud-end FL with adaptable iter-
ations between adjacent aggregations (i.e., adaptable τ ).
Yet, risks from the cloud are not considered. In each
training round, every device will participate (i.e., without
a selection process).

3.For CIFAR-10, the model has nine layers: 5× 5× 16 Convolutional
layer (CONV) → 2× 2 MaxPool layer → Local Response Normalization
layer (LRN) → 5× 5× 48 CONV → LRN → 2× 2 MaxPool layer →
3072× 256 Dense layer → 256× 10 Dense layer → Softmax layer. For
MNIST, the model consists of nine layers:5× 5× 16CONV→ 2× 2MaxPool
layer → LRN → 5× 5× 32 CONV → LRN → 2× 2 MaxPool layer →
2352× 256 Dense layer → 256× 10 Dense layer → Softmax layer. These
mdoels’ two convolutional layers and the first dense layer are followed by
the activation function ReLU. Their loss functions are cross-entropy. They’re
compiled in Tensorflow.

4.We highlight that the comparison with ltAdap and FEEL also works as
an ablation study for comprehensive evaluation of AHFL. Once the resource
consumption runs out of budget, all these schemes would stop training. And if the
current privacy budget has been exhausted but the resource budget has not been
used up, these schemes would allow the ends to train local data independently
without the corresponding cooperation with other entities.

� FLGDP [17]: It provides membership inference resistance
by implementing global DP on the aggregated model of
general cloud-end FL. Here, the value of τ is fixed.

� FEEL [18]: It adopts a cloud-edge-end FL structure. It
injects DP noise to both the model parameters in the cloud
and the intermediate features. It fails to investigate the
balance of privacy and efficiency by setting a fixed τ .

Parameter Setting. During local training, we set the batch size
b = 100, the learning rate η = 0.01, the number of end devices
N = 30. For the resource manager, we set the search step for
sampling rate and noise intensity γ and γ′ to 0.03 and 0.01,
respectively. The constant control parameter ϕ is 5× 10−5. The
upper limit of τ is 50.

B. Resource Consumption Analysis (RQ1)

We first measure and analyze the end device’s resource con-
sumption of our cloud-edge-end hierarchical FL framework.
We compare it with the Traditional cloud-end FL framework
(TFL). Both baseline ItAdap and FLGDP adopt such traditional
framework. We divide the schemes adopting TFL into two cate-
gories according to whether they consider honest-but-curious
cloud or not. They are abbreviated as TFL w/o privacy and
TFL w/ privacy, respectively. All these schemes perform 10
epochs of local training and 1 round of global communication
for aggregation. The results are illustrated in Table III.

The main difference between TFL w/privacy and TFL w/o
privacy is reflected in the time consumption for the end’s
computation. Baseline TFL w/ privacy takes an extra 0.16s in
CIFAR-10 and 0.12s in MNIST to perturb the local trained model
parameters before sending them to the cloud. Owing to the richer
edge resources, HFL decreases the time consumption for the
end’s computation by 50.5% than TFL w/ privacy. Although the
end need to additionally perturb the intermediate features and
model parameters, the time saved by model offloading training is
higher than the consumption for perturbation. The main concern
brought by offloading is the communication time between the
end and the edge. We found that it takes 3.10s and 2.60s for
such communication in the two datasets. Some compression
methods could be introduced to reduce this consumption. The
computation time cost in the edge is relatively small. In sum-
mary, the average local training time of HFL is decreased by
8.58%. HFL also makes use of the rich communication resource
of the edge to upload the parameter of deep layers. It shortens
the average global communication time by 59.35%. As for the
memory consumption, HFL reduces it by 43.61% since it allows
the end to only train a partial model. In summary, our proposed
HFL could reduce the end’s resource consumption with the help
of the edge.

In the evaluation, w.l.o.g., we use time as the resource type.
In this case, the corresponding computation resource cost is the
time taken for local training and the communication resource
cost is the time taken for exchanging model updates with the
cloud. R is the upper limit of the total time cost of the end
device in FL process.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:50:24 UTC from IEEE Xplore.  Restrictions apply. 



GUO et al.: PRIVACY VS. EFFICIENCY: ACHIEVING BOTH THROUGH ADAPTIVE HIERARCHICAL FEDERATED LEARNING 1339

TABLE III
RESOURCE CONSUMPTION W.R.T. TIME (LOCAL TRAINING AND GLOBAL COMMUNICATION) AND MEMORY

Fig. 5. τ under different resource budget settings.

C. Effectiveness of the Adaptive Control Design (RQ2)

AHFL embeds three adaptive control modules based on HFL.
In this subsection, we would verify the effectiveness of these
three modules by measuring inference accuracy and loss value
under limited resource and privacy budgets.

1) Resource Scheduling Module: Effectiveness. We adjust
the total resource budget R to verify whether the resource
scheduling module would perceive the resource budget and
dynamically adjust the number of local training epochs τ in
each round. Since the training complexity of the two data sets is
different, we set different R for them. Specifically, for CIFAR-
10, R is set from 250s to 2500s; for MNIST, R increases from
400s to 1200s.

We recorded τ in each round and calculated its average value.
The results are shown in Fig. 5. We can observe that R indeed
affects the resource scheduling of AHFL. With the increase of
R, τ is gradually decreased, which means that more frequent
parameter interactions are allowed to prevent the convergence
direction of each end from being too scattered. Besides, the
higher the degree of data imbalance, the lower τ . This is because
the imbalance easily leads to great differences in the convergence
direction.

Basic Performance. We then evaluate whether the dynamical
τ in AHFL would benefit the training compared with other
schemes. We set the resource budget R 1500s for CIFAR-10
and 800s for MNIST. Baseline FEEL adopts a fixed τ during
FL training. Different τ makes FEEL perform differently, so we
evaluate FEEL under a set of τ {1, 3, 5, 7, 10, 20, 30, 50}. Fig. 6
illustrates the comparison of accuracy and loss value among
schemes under the given resource budgets. Baseline Centralized
undoubtedly has the highest accuracy and lowest loss value
regardless of the data distribution. But it fails to consider the
data privacy. Baseline FEEL is not always superior to Baseline

Fig. 6. Comparison of accuracy and loss value under a given resource budget.

Fig. 7. Accuracy and loss value under different resource budget settings.
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Fig. 8. Sampling rate S under different privacy budget εc settings.

ItAdap. The reason is that although FEEL alleviates the impact
of limited resource budget by offloading tasks, it neglects the
importance of resource scheduling, resulting in it being inferior
to Itadap in some cases of τ . But manually finding the best τ
for FEEL requires much effort. Our scheme AHFL automati-
cally schedules the resource while leveraging edge computing
paradigm. The results demonstrate that AHFL finds the near
optimal resource scheduling and performs superior to ItAdap
and FEEL in most cases. Compared with ItAdap and FEEL,
AHFL improves the average accuracy by 7.2% and reduces the
average loss value by 17.5%.

Varying Resource Budgets. We further evaluate whether our
scheme AHFL is still better than ItAdap and FEEL under dif-
ferent resource budgets. The results are shown in Fig. 7. Here
we set τ fixed (10 for CIFAR-10 and 8 for MNIST) for FEEL.
With these settings, FEEL performs well in the above basic
performance evaluation. From Fig. 7, we found that AHFL can
better adapt to the different R than the other two. In addition,
we also find that the advantages are more prominent in the case
of imbalanced data distribution and limited resource budget.

2) Device Selection Module: Effectiveness. We set multiple
different privacy budgets of cloud εc to test whether the module
would adjust the device sampling rate s accordingly. εc is set
{4, 6, 8, 10, 12} for CIFAR-10 and {4, 5, 6, 7, 8} for MNIST.
δc in DP is fixed at 1e-3. The resource budget R for the two
datasets is set to 1500s and 800s respectively by default in
subsequent experiments. Our scheme needs to accommodate
both the efficiency expectation and privacy requirement. Here
we keep the resource budget unchanged and increase the privacy
budgets, simulating the transition of the main focus from privacy
requirement to efficiency expectations.

We record s in each round and calculate its mean value. The
results are shown in Fig. 8. It’s found that s gradually increases
with the growth of εc. The reason is that easing the privacy
requirement against the cloud allows the devices to participate
in FL more often to optimize the model.

Basic Performance. We then evaluate the performance with
the adaptive device selection module under a given privacy
budget of cloud. We set the budget εc 10 for CIFAR-10 and
6 for MNIST. We compare AHFL with Baseline FLGDP and
FEEL because they consider the honest-but-curious cloud in
FL. Considering the two fixed the device sampling rate s during
FL training, we measure their performance when s is {0.2, 0.4,
0.6, 0.8, 1} respectively. Fig. 9 demonstrates that different
s would lead to great differences in their performance. The
reason is that high sampling rate s accelerates the consumption

Fig. 9. Comparison of accuracy and loss value under a given privacy budget
of the cloud.

Fig. 10. Accuracy and loss value under different privacy budget εc settings.

of the privacy budget and termination of FL, resulting in poor
performance, while low s exhausts the resource budget without
fully learning the knowledge of the end. The optimal s for
different data distributions are usually different. For FLGDP,
the optimal s is 1, 0.8 and 0.8 in Case 1-3 of CIFAR-10, 1,
0.6 and 0.6 in Case 1-3 of MNIST. Our scheme AHFL adjusts
s without manual setting. From Fig. 9, we could observe that
the adjustment keeps the model performance at a high level in
all these cases. Compared with FLGDP and FEEL, the average
accuracy of AHFL is improved by 8.67% and the average loss
value is reduced by 20.1%.
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Fig. 11. Accuracy and loss value under different privacy budget εe settings.

Varying Privacy Budgets of the Cloud.
We further evaluate the impact of εc on the performance.

The results are presented in Fig. 10. Considering that when s
is set to 0.8, baseline FLGDP and FEEL perform well in the
above basic performance tests. Here we set s 0.8 for them. Our
scheme AHFL always performs better than these baselines under
different εc, especially when εc is small. We also noticed that
the performance improvement of AHFL is not very significant
in some extreme cases. Specifically, in Case 2 of CIFAR-10,
due to the high data imbalance and training complexity, the
model convergence is difficult. In Case 1 of MNIST, owing
to the uniform data distribution and low training difficulty, the
model converges quickly even under stringent budgets. Thus,
the performance of the three schemes is similar.

3) Local Noise Injection Module: We dynamically adjust the
privacy budget of the edge εe to evaluate the effectiveness of
this adaptive module. We compare AHFL with baseline FEEL,
which also considers the malicious edge. FEEL calculates the
minimum noise intensity σe satisfying (6) with the given εe, its
fixed τ and δe = 1e− 2.σe is used to control noise injection dur-
ing edge-end interaction. FEEL keeps offloading tasks until any
budget are exhausted. Our scheme AHFL adaptively adjusts σe

and offloading decision according to τ obtained in the resource
scheduling module. Their performance comparison is demon-
strated in Fig. 11. The average accuracy of AHFL is increased
by 7.51% and the average loss value is decreased by 13.24%.
As εe decreases, their performance differences always increase
gradually. The reason is that FEEL insists on increasing the noise
intensity σe to meet the privacy requirements during offloading
tasks. However, excessive noise results in poor accuracy, which

is greater than the advantages of offloading tasks. AHFL can
reasonably plan the privacy budget of the edge by dynamically
adjusting noise injection and offloading decisions.

VI. CONCLUSION

In this paper, we propose an adaptive hierarchical FL system
to maximize inference accuracy under both resource and pri-
vacy budgets. The system involves edge computing paradigm
to improve the training efficiency and applies DP mechanism to
enhance the privacy of our design. An adaptive control algorithm
is embedded in the system to coordinate the optimization of
resource scheduling and the privacy protection operations to
optimize the model performance. Extensive experiment results
demonstrate that our scheme always achieves the best accuracy
than other schemes. A key insight from our work is that the
involvement of networked computation resources is expected
to effectively relieve the tension between resource and pri-
vacy in distributed computing systems. With the large-scale
deployments of 5G networks, we believe that the integration
of FL, edge computing, and adaptable security primitives, will
nurture the field for building more secure and efficient distributed
computing architectures.

REFERENCES

[1] E. Khramtsova, C. Hammerschmidt, S. Lagraa, and R. State, “Feder-
ated learning for cyber security: SOC collaboration for malicious URL
detection,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst., 2020,
pp. 1316–1321.

[2] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-balancing
federated learning with global imbalanced data in mobile systems,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 59–71, Jan. 2021.

[3] J. Guo, J. Wu, A. Liu, and N. Xiong, “LightFed: An efficient and secure
federated edge learning system on model splitting,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 11, pp. 2701–2713, Nov. 2022.

[4] L. Li, H. Xiong, Z. Guo, J. Wang, and C. Xu, “SmartPC: Hierarchical pace
control in real-time federated learning system,” in Proc. IEEE Real-Time
Syst. Symp., 2019, pp. 406–418.

[5] A. C. Zhou, Y. Xiao, Y. Gong, B. He, J. Zhai, and R. Mao, “Privacy regu-
lation aware process mapping in geo-distributed cloud data centers,” IEEE
Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1872–1888, Aug. 2019.

[6] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy analysis
of deep learning: Passive and active white-box inference attacks against
centralized and federated learning,” in Proc. IEEE Symp. Secur. Privacy,
2019, pp. 739–753.

[7] Z. Wang, H. Xu, J. Liu, H. Huang, C. Qiao, and Y. Zhao, “Resource-
efficient federated learning with hierarchical aggregation in edge comput-
ing,” in Proc. IEEE Conf. Comput. Commun., 2021, pp. 1–10.

[8] S. Wang et al., “Adaptive federated learning in resource constrained
edge computing systems,” IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[9] R. Chen, L. Li, K. Xue, C. Zhang, L. Liu, and M. Pan, “To talk or to work:
Energy efficient federated learning over mobile devices via the weight
quantization and 5g transmission co-design,” in Proc. IEEE Conf. Comput.
Commun., 2021, pp. 1–10.

[10] U. Saleem, Y. Liu, S. Jangsher, X. Tao, and Y. Li, “Latency minimization
for D2D-enabled partial computation offloading in mobile edge comput-
ing,” IEEE Trans. Veh. Technol, vol. 69, no. 4, pp. 4472–4486, Apr. 2020.

[11] H. Fang and Q. Qian, “Privacy preserving machine learning with homo-
morphic encryption and federated learning,” Future Internet, vol. 13, no. 4,
2021, Art. no. 94.

[12] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3/4, pp. 211–407,
2014.

[13] Y. Wang, S. Lu, and L. Zhang, “Searching privately by imperceptible lying:
A novel private hashing method with differential privacy,” in Proc. 28th
ACM Int. Conf. Multimedia, 2020, pp. 2700–2709.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:50:24 UTC from IEEE Xplore.  Restrictions apply. 



1342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 4, APRIL 2023

[14] H. Wang, G. Tang, K. Wu, and J. Wang, “PLVER: Joint stable allocation
and content replication for edge-assisted live video delivery,” IEEE Trans.
Parallel Distrib. Syst., vol. 33, no. 1, pp. 218–230, Jan. 2022.

[15] S. Dong, D. Zeng, L. Gu, and S. Guo, “Offloading federated learning task
to edge computing with trust execution environment,” in Proc. IEEE 17th
Int. Conf. Mobile Ad Hoc Sensor Syst., 2020, pp. 491–496.

[16] Y. Mao, S. Yi, Q. Li, J. Feng, F. Xu, and S. Zhong, “Learning from
differentially private neural activations with edge computing,” in Proc.
IEEE/ACM Symp. Edge Comput., 2018, pp. 90–102.

[17] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” 2017, arXiv:1712.07557.

[18] Y. Guo, F. Liu, Z. Cai, L. Chen, and N. Xiao, “FEEL: A federated edge
learning system for efficient and privacy-preserving mobile healthcare,”
in Proc. 49th Int. Conf. Parallel Process., 2020, Art. no. 9.

[19] K. Bonawitz et al., “Towards federated learning at scale: System design,”
2019, arXiv:1902.01046.

[20] B. Y. Lin et al., “FedNLP: A research platform for federated learning in
natural language processing,” 2021, arXiv:2104.08815.

[21] X. Huang, Y. Ding, Z. L. Jiang, S. Qi, X. Wang, and Q. Liao, “DP-FL:
A novel differentially private federated learning framework for the unbal-
anced data,” World Wide Web, vol. 23, no. 4, pp. 2529–2545, 2020.

[22] C. Niu et al., “Billion-scale federated learning on mobile clients: A
submodel design with tunable privacy,” in Proc. 26th Annu. Int. Conf.
Mobile Comput. Netw., 2020, Art. no. 31.

[23] Z. Jia and S. A. Jafar, “X-secure T-private federated submodel learning,”
in Proc. IEEE Int. Conf. Commun., 2021, pp. 1–6.

[24] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, and T. Zhou, “A survey on edge
computing systems and tools,” Proc. IEEE, vol. 107, no. 8, pp. 1537–1562,
Aug. 2019.

[25] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud
orchestrated network computing paradigms: Transparent computing, mo-
bile edge computing, fog computing, and cloudlet,” ACM Comput. Surveys,
vol. 52, no. 6, pp. 125:1–125:36, 2020.

[26] Y. Jin, L. Jiao, Z. Qian, S. Zhang, S. Lu, and X. Wang, “Resource-
efficient and convergence-preserving online participant selection in feder-
ated learning,” in Proc. IEEE 40th Int. Conf. Distrib. Comput. Syst., 2020,
pp. 606–616.

[27] X. Zhang, X. Zhu, J. Wang, H. Yan, H. Chen, and W. Bao, “Federated learn-
ing with adaptive communication compression under dynamic bandwidth
and unreliable networks,” Inf. Sci., vol. 540, pp. 242–262, 2020.

[28] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi, “Feder-
ated learning with compression: Unified analysis and sharp guarantees,”
2021, arXiv:2007.01154.

[29] X. Pan, W. Wang, X. Zhang, B. Li, J. Yi, and D. Song, “How you act tells a
lot: Privacy-leaking attack on deep reinforcement learning,” in Proc. 18th
Int. Conf. Auton. Agents Multiagent Syst., 2019, pp. 368–376.

[30] N. Carlini et al., “Extracting training data from large language models,” in
Proc. USENIX Secur. Symp., 2021, pp. 2633–2650.

[31] M. Song et al., “Analyzing user-level privacy attack against federated
learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 10, pp. 2430–2444,
Oct. 2020.

[32] R. Kanagavelu et al., “Two-phase multi-party computation enabled
privacy-preserving federated learning,” in Proc. IEEE/ACM 20th Int.
Symp. Cluster Cloud Internet Comput., 2020, pp. 410–419.

[33] B. P. Knijnenburg and S. Berkovsky, “Privacy for recommender systems:
Tutorial abstract,” in Proc. 11th ACM Conf. Recommender Syst., 2017,
pp. 394–395.

[34] R. Hu, Y. Guo, H. Li, Q. Pei, and Y. Gong, “Personalized federated
learning with differential privacy,” IEEE Internet of Things J., vol. 7, no. 10,
pp. 9530–9539, Oct. 2020.

[35] Y. Chen, Y. Ping, Z. Zhang, B. Wang, and S. He, “Privacy-preserving image
multi-classification deep learning model in robot system of industrial IoT,”
Neural Comput. Appl., vol. 33, no. 10, pp. 4677–4694, 2021.

[36] X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-
efficient offloading for DNN-based smart IoT systems in cloud-edge envi-
ronments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 683–697,
Mar. 2022.

[37] S. Abuadbba et al., “Can we use split learning on 1D CNN models for
privacy preserving training?,” in Proc. ACM Asia Conf. Comput. Commun.
Secur., 2020, pp. 305–318.

[38] A. Salama, “Scalable data analytics and machine learning on the cloud,”
PhD dissertation, Dpt. Comput. Sci., Tech. Univ. Darmstadt, Darmstadt,
Germany, 2021.

[39] M. Oh, S. Park, S. Kim, and H. Chae, “Erratum to: Machine learning-
based analysis of multi-omics data on the cloud for investigating gene
regulations,” Brief. Bioinf., vol. 22, no. 1, pp. 66–76, 2021.

Yeting Guo received the BS and MS degrees in com-
puter science from the National University of Defense
Technology, China, in 2017 and 2019, respectively.
She is currently working toward the PhD degree
with the College of Computer, National University
of Defense Technology, Changsha, China. Her main
research interests include computer architecture and
edge computing.

Fang Liu received the BS and PhD degrees in com-
puter science from the National University of Defense
Technology, Changsha, China, in 1999 and 2005,
respectively. She is a full professor with the School of
Design, Hunan University. Her main research inter-
ests include edge computing, data storage and man-
agement, and Intelligent design.

Tongqing Zhou received the bachelor’s, master’s,
and PhD degrees in computer science and technology
from the National University of Defense Technology
(NUDT), Changsha, China, in 2012, 2014, and 2018,
respectively. He is currently a postdoctoral fellow
with the College of Computer, NUDT. His main
research interests include ubiquitous computing, mo-
bile sensing, and data privacy.

Zhiping Cai received the BEng, MASc, and PhD
degrees in computer science and technology from the
National University of Defense Technology (NUDT),
China, in 1996, 2002, and 2005, respectively. He
is a full professor with the College of Computer,
NUDT. His current research interests include artificial
intelligence, network security, and big data. He is a
distinguished member of the CCF.

Nong Xiao received the BS and PhD degrees in
computer science from the College of Computer,
National University of Defense Technology (NUDT),
China, in 1990 and 1996, respectively. He is currently
a professor with the School of Data and Computer
Science, Sun Yat-sen University. His current research
interests include network parallel computing, large-
scale storage system, and computer architecture.

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on April 17,2025 at 12:50:24 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


