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RayMVSNet++: Learning Ray-Based 1D Implicit
Fields for Accurate Multi-View Stereo
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and Kai Xu , Senior Member, IEEE

Abstract—Learning-based multi-view stereo (MVS) has by far
centered around 3D convolution on cost volumes. Due to the high
computation and memory consumption of 3D CNN, the resolution
of output depth is often considerably limited. Different from most
existing works dedicated to adaptive refinement of cost volumes,
we opt to directly optimize the depth value along each camera ray,
mimicking the range (depth) finding of a laser scanner. This reduces
the MVS problem to ray-based depth optimization which is much
more light-weight than full cost volume optimization. In particular,
we propose RayMVSNet which learns sequential prediction of a 1D
implicit field along each camera ray with the zero-crossing point
indicating scene depth. This sequential modeling, conducted based
on transformer features, essentially learns the epipolar line search
in traditional multi-view stereo. We devise a multi-task learning for
better optimization convergence and depth accuracy. We found the
monotonicity property of the SDFs along each ray greatly benefits
the depth estimation. Our method ranks top on both the DTU
and the Tanks & Temples datasets over all previous learning-based
methods, achieving an overall reconstruction score of 0.33 mm on
DTU and an F-score of 59.48% on Tanks & Temples. It is able
to produce high-quality depth estimation and point cloud recon-
struction in challenging scenarios such as objects/scenes with non-
textured surface, severe occlusion, and highly varying depth range.
Further, we propose RayMVSNet++ to enhance contextual feature
aggregation for each ray through designing an attentional gating
unit to select semantically relevant neighboring rays within the
local frustum around that ray. This improves the performance on
datasets with more challenging examples (e.g., low-quality images
caused by poor lighting conditions or motion blur). RayMVSNet++
achieves state-of-the-art performance on the ScanNet dataset. In
particular, it attains an AbsRel of 0.058m and produces accurate
results on the two subsets of textureless regions and large depth
variation.

Index Terms—Multi-view stereo, implicit fields, deep neural
networks.

Manuscript received 30 September 2022; revised 23 March 2023; accepted
6 July 2023. Date of publication 17 July 2023; date of current version 3
October 2023. This work was supported in part by the National Key Research
and Development Program of China under Grants 2018AAA0102200 and
2018YFB1305100, in part by the NSFC under Grants 62325211, 62132021, and
62002379, and in part by the Natural Science Foundation of Hunan Province
of China under Grants 2023JJ20051 and 2023JJ20048. Recommended for
acceptance by R. P. Wildes. (Yifei Shi and Junhua Xi contributed equally to
this work.) (Corresponding authors: Dewen Hu; Kai Xu.)

Yifei Shi and Dewen Hu are with the College of Intelligence Science and
Technology, National University of Defense Technology, Changsha, Hunan
410073, China (e-mail: yifei.j.shi@gmail.com; dwhu@nudt.edu.cn).

Junhua Xi, Zhiping Cai, and Kai Xu are with the College of Computer Science,
National University of Defense Technology, Changsha, Hunan 410073, China
(e-mail: hjh17@nudt.edu.cn; zpcai@nudt.edu.cn; kevin.kai.xu@gmail.com).

Digital Object Identifier 10.1109/TPAMI.2023.3296163

I. INTRODUCTION

L EARNING-BASED multi-view stereo has gained a surge
of attention since the seminal work of MVSNet [74]. The

core idea of MVSNet and many followup works is to construct
a 3D cost volume in the frustum of the reference view through
warping the image features of several source views onto a set
of fronto-parallel sweeping planes at hypothesized depths. 3D
convolutions are then conducted on the cost volume to extract
3D geometric features and regress the final depth map of the
reference view.

Existing methods are often limited to low-resolution cost
volume since 3D CNN is both computation and memory con-
suming. Several recent works proposed to upsample or refine
cost volume aiming at increasing the resolution of output depth
maps [10], [19], [72]. Such refinement, however, still needs to
trade off between depth and spatial (image) resolutions. For
example, CasMVSNet [19] opts to narrow down the range of
depth hypothesis to allow high-res depth estimation, matching
the spatial resolution of input RGB. 3D convolution is then
confined within the narrow band, thus degrading the efficacy
of 3D feature learning.

In fact, depth map is view-dependent although cost volume is
not. Since the target is depth map, refining the cost volume seems
neither economic nor necessary. There could be a large portion
of the cost volume invisible to the view point. We advocate direct
optimization of the depth value along each camera ray, mimick-
ing the range (depth) finding of a laser scanner. This allows us
to reduce the MVS problem to a ray-based depth optimization
one which is, individually, a much more light-weight task than
full cost volume optimization. We formulate the “range finding”
of each camera ray as learning a 1D implicit field along the ray
whose zero-crossing point indicates the scene depth along that
ray (Fig. 1, top row). To achieve that, we propose RayMVSNet
which learns sequential modeling of multi-view features along
camera rays based on recurrent neural networks.

Technically, RayMVSNet contains two critical designs to
facilitate learning accurate ray-based 1D implicit fields. First,
the sequential prediction of 1D implicit field along a camera
ray is essentially conducting an epipolar line search [2] with
cross-view feature matching whose optimum corresponds to the
point of ray-surface intersection. To learn this line search, we
propose Epipolar Transformer. Given a camera ray of the ref-
erence view, it learns the matching correlation of the pixel-wise
2D features of each source view based on attention mechanism.
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Fig. 1. RayMVSNet performs multi-view stereo via predicting 1D implicit
fields on a camera ray basis. Top: The sequential prediction of 1D field is light-
weight and the monotonicity of ray-based distance field around surface-crossing
points facilitates robust learning, leading to more accurate depth estimation than
the purely cost-volume-based baselines such as MVSNet [74]. Bottom: By ag-
gregating more contextual feature with an extra local frustum-based attentional
gating unit, RayMVSNet++ is able to achieve more accurate and robust depth
predictions in challenging scenarios, such as poor lighting conditions or motion
blur.

The transformer features of all views, together with (low-res)
cost volume features, are then concatenated and fed into an
LSTM [22] for implicit field regression. Fig. 3 visualizes how
epipolar transformer selects reliable matching features from
different views.

Second, we confine the sequential modeling for each camera
ray within a fixed-length range centered around the hypothesized
surface-crossing point given by the vanilla MVSNet. This makes
the output 1D implicit field along each ray monotonous, which
is normalized to [−1, 1]. Such restriction and normalization
lead to significant reduction of learning complexity and im-
provement of result quality. We devise two learning tasks: 1)
sequential prediction of signed distance at a sequence of points
sampled in the fixed-length range and 2) regression of the zero-
crossing position on the ray. A carefully designed loss function
correlates the two tasks. Such multi-task learning approach
yields highly accurate estimation of per-ray surface-crossing
points.

Learning view-dependent implicit fields has been well-
exploited in neural radiance fields (NeRF) [41] with great suc-
cess. Recently, NeRF was combined with MVSNet for better
generality [6]. Albeit sharing conceptual similarity, our work
is completely different from NeRF. First, NeRF (including
MVSNeRF [6]) is designed for novel view synthesis, a dif-
ferent task from MVS. Second, the radiance field in NeRF is
defined and learned in continuous 3D space and camera rays are

used only in the volume rendering stage. In our RayMVSNet,
on the other hand, we explicitly learn 1D implicit fields on
a camera ray basis. Third, while NeRF is usually trained to
fit a given scene, RayMVSNet naturally generalizes to novel
scenes.

RayMVSNet was published in CVPR 2022 [67] where we
demonstrated state-of-the-art performance of RayMVSNet on
two public datasets over all learning-based methods. RayMVS-
Net achieves an overall reconstruction score of 0.33mm on DTU
and an F-score of 59.48% on Tanks & Temples. In particular,
RayMVSNet is able to produce high-quality depth estimation
and point cloud reconstruction results in challenging scenarios
such as objects/scenes with non-textured surface, severe occlu-
sion, and highly varying depth range. Notably, since all rays
share weights for the LSTM and the epipolar transformer, the
RayMVSNet model is light weight. Moreover, the computation
for each ray is highly parallelizable.

The ray-based solution, however, has an inherent limitation
of insufficient context aggregation; it does not account for the
interaction between neighboring rays. This may lead to degraded
performance on larger and more complex scenes (such as those
from ScanNet [11]) where context is more essential. In this
paper, we propose RayMVSNet++, an augmented version of
RayMVSNet, by enhancing the ray-based feature aggregation
with local-frustum-based context aggregation. For each ray,
we extract its features in the frustum centered around the ray
learn. This amounts to select semantically relevant neighbor-
ing rays in the frustum and aggregate the contextual infor-
mation from those rays. In particular, an attentional gating
unit with the Gumbel-Softmax trick [25] is designed to make
the selection of neighboring rays end-to-end trainable. This
leads to more accurate and robust depth predictions, especially
in the challenging scenarios such as poor lighting conditions
or motion blur which cannot be well handled by existing
methods.

RayMVSNet++ outperforms prior works (including Ray-
MVSNet) on ScanNet, achieving an AbsRel of 0.058m. We also
demonstrate that RayMVSNet++ is able to produce accurate
results on two subsets of ScanNet containing textureless regions
and exhibiting large depth variation.

Our work makes the following contributions (those which
are newly introduced in RayMVSNet++ are marked with bullet
symbol of “∗”):
� A novel formulation of deep MVS as learning ray-based

1D implicit fields.
� An epipolar transformer designed to learn cross-view fea-

ture correlation with attention mechanism.
� A multi-task learning approach to sequential modeling and

prediction of 1D implicit fields based on LSTM.
� A challenging test set focusing on regions with specular re-

flection, shadow or occlusion based on the DTU dataset [1]
and associated extensive evaluations.

� A local-frustum-based context aggregation that extends the
receptive field of the ray-based model, leading to more
accurate and robust predictions.

� New experiments on the ScanNet dataset to comprehen-
sively evaluate the performance in challenging senarios.
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Fig. 2. Method overview. Given multiple overlapping RGB images, the multi-view image features are extracted by a 2D U-Net. The coarse depth map is then
estimated by a coarse 3D cost volume. 2D multi-view image features are then correlated and aggregated by epipolar transformer. At last, the ray-based 1D implicit
field, which includes a local-frustum-based context aggregation module, is learnt on each camera viewing ray to simultaneously estimate the SDF of the sampled
points and the location of the zero-crossing point.

Fig. 3. Effects of epipolar transformer. Given a point in the reference image,
epipolar transformer automatically selects reliable matching feature on the
epipolar line of the source image. Note that it finds the matching feature
correctly despite the influences of light changing (top row) and specular re-
flection (bottom row). The visualized point-pair correlations are deduced from
the Softmax(QKT ) in Formulation (1).

II. RELATED WORK

Learning-Based MVS: Recent advances have made remark-
able progress on learning-based MVS. Hartmann et al. [20] first
propose to learn the multi-patch similarity from two views by
a Siamese convolutional network. SurfaceNet [26] and Deep-
MVS [23] warp the multi-view images into the 3D cost vol-
ume and adopt 3D neural networks to estimate the geome-
try. LSM [28] introduces differentiable projection operation
to enable the end-to-end 3D reconstruction from multi-view
images. MVSNet [74] proposes a differentiable homography and
leverages 3D cost volume in a learning pipeline. MVSNet ag-
gregates contextual information by a 3D convolutional network,
especially on regions with complex illumination, specularity,
and occlusion. However, the high computation and memory
consumption restrict the output depth resolution, limiting its
scalability in large scenes.

To reduce the requirements, many follow-up works have been
developed. R-MVSNet [75] proposes to regularize the 2D cost

maps along the depth direction so the memory consumption
could be greatly reduced. Point-MVSNet [7] first computes the
coarse depth with a low-resolution cost volume and then uses a
point-based refinement network to generate the high-resolution
depth map. CasMVSNet [19] adopts a cascade cost volume to
gradually narrow the depth range and increase the cost volume
resolution. Similar ideas are later explored to reduce the memory
cost of 3D convolutions and/or increase the depth quality, such
as coarse-to-fine depth optimization [10], [39], [68], [69], [71],
[72], [79], attention-based feature aggregation [38], [66], [78],
[84], and patch matching-based method [37], [62]. Unlike these
works, RayMVSNet optimizes the depth on each camera view-
ing ray instead of the 3D volume, which is more light-weight.

Multi-view feature aggregation is one of the most crucial
components in learning-based MVS. Previous works adopted
various solutions to learn mutual correlations [85], avoiding the
influences of incorrect matches caused by occlusion. Popular
solutions include the visibility-based aggregation [8], [80], the
attention-based aggregation [66], [73], [77], etc. RayMVSNet
follows the attention-based aggregation route. Nevertheless, it
learns feature aggregation at each 3D point, instead of the entire
image or volume, thus greatly reducing the memory consump-
tion.

Our method is also relevant to [42], [55] in terms of recon-
structing 3D object by estimating the SDFs. While their methods
focus on reconstructing the global TSDF volume of large-scale
scenes and generating 3D surfaces with good completeness, our
method estimates local SDFs on each camera ray individually
resulting in more accurate depth estimation.

Learning MVS With Transformers: Since the pioneering work
of [58], Transformers have significantly advanced the research
of natural language processing [29], [30], [33]. More recently,
Transformers show great potential in vision tasks, such as image
classification [4], [15], object detection [4], scene segmenta-
tion [12], panoptic segmentation [35], pose estimation [47],
and visual localization [54], thanks to the superb capabilities
of modeling long-range dependencies. There are also a bunch of
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works that utilize Transformers to capture the long-range rela-
tions in solving MVS problems. Most of them aggregate context
from the extracted 2D image features and solve the cross-view
matching problem. For example, MVSTR [87], LANet [84]
and TransMVSNet [14] unitize the attention mechanisms to
extract dense features with global contexts. PA-MVSNet [82]
and AACVP-MVSNet [78] introduce self-attention layers for
hierarchical features extraction, which is able to capture multi-
scale matching clues for the subsequent depth inference task.
AttMVS [38] introduces an attention-enhanced matching confi-
dence volume to improve the matching robustness. To reduce the
searching cost, recent researches [21], [73] have been focusing
on leveraging the geometric prior of epipolar line by restricting
attention associations within the epipolar line, which makes the
learning more efficient. Our method also utilizes the epipolar
geometric prior. However, it is different from the previous works
as the proposed epipolar transformer essentially learns feature
fusion at a 3D point by aggregating multi-view image features,
while previous methods learn the matching of 2D pixels from
two images. This leads to different network architectures.

Learning Implicit Representation: Many works have at-
tempted learning shape representation based on implicit fields.
Implicit field shows promising results on facilitating a variety
number of problems, such as shape reconstruction [13], [43],
[81], [86] and rendering [41], [56]. It achieves high quality
shape reconstruction by allocating a value to every point in
3D space and extracting the shape surface as an iso-surface.
DeepSDF [45] proposes to predict the magnitude of 3D point
to indicate the distance to the surface boundary and a sign to
determine whether the point is inside or outside of the shape.
IM-Net [9] and Occupancy Network [40] learn the implicit fields
to estimate the point-wise occupancy probability with a binary
classifier. To improve the effectiveness and generalization on
complex scenes, latest studies propose to enhance implicit field
by introducing extra inputs [46], [70], adopting advanced learn-
ing techniques [16], [44], [53], [57] and decomposing the scene
into local regions [5], [18], [27], [56]. In particular, PIFu [48]
proposes an implicit representation that locally aligns pixels of
2D images with the global context of their corresponding 3D
object. The method is able to infer both the object surface and
texture from single or multiple input images.

NeRF [41] represents complex scenes by learning a view-
dependent implicit neural radiance field, achieving high-
resolution realistic novel view synthesis. Aside from the reasons
mentioned in the introduction, our method is different from
NeRF in the following aspects. First, NeRF learns the radiance
field by MLPs. In contrast, our method tackles the problem of
cross-view feature correlation with sequential modeling. Sec-
ond, our model generalizes to untrained scenes, while NeRF
generally does not. To increase the NeRF’s generality on un-
trained scenes, a series of methods have been proposed, such
as NeuralRay [36], TransNeRF [61]. In particular, IBRNet [64]
learns multi-view image-based rendering with a ray transformer,
bringing great cross-scene generality. Despite the similarity in
the concept of inference on the camera ray, our task is different
from theirs, resulting in different network designs and training
schemes.

Since NeRF is designed for view synthesis, it has inferior
abilities on approximating the scene’s geometry, due to the
shape-radiance ambiguities [83]. Recent works have investi-
gated incorporating the geometric priors or clues, such as the
depth prior [65] and the TSDF [63], [76], to enhance the scene
reconstruction performance while maintaining the quality of
view synthesis. Our method is also different from these methods,
as these methods are trained with both appearance and geometry
supervision while our method only requires the latter.

III. METHOD

Overview: RayMVSNet++ estimates the depth maps from
multiple overlapping RGB images. Similar to [74], at each time,
it takes one reference image I1 and N − 1 source images {Ii}N2
as input, and infers the depth map of the reference image.
RayMVSNet++ starts from building a light-weight 3D cost
volume and estimating a coarse depth map (Section III-A). Then,
epipolar transformer is proposed to learn the matching correla-
tion of the pixel-wise 2D features of each view using attention
mechanism (Section III-B). The transformed features are fed
into the 1D implicit field, implemented by an LSTM, along each
camera viewing ray to estimate the signed distance functions
(SDFs) of the hypothesized points as well as the zero-crossing
position (Section III-C). In particular, a local-frustum-based
context aggregation is introduced to aggregate more context
from the semantically relevant neighboring rays. The method
overview is illustrated in Fig. 2.

A. 3D Cost Volume and Coarse Depth Prediction

We first feed the multi-view images {Ii}N1 to a 2D U-Net
to extract image features {FI

i }N1 . The width and height of the
image features are the same to those of the input images. Hence,
{FI

i }N1 preserve the fine appearance feature of local details,
facilitating the high-resolution depth estimation. By leveraging
the 2D multi-view image features and the camera parameters,
we build a variance-based 3D cost volume V , and extract the
3D volumetric features FV via a 3D U-Net [74]. Since 3D
convolution is memory-consuming, the resolution of V in our
work is set to be smaller than that in the previous works [10],
[19], [72]. The coarse depth maps are estimated from the 3D
volumetric features, which are then used for determining the
modeling range of the ray-based 1D implicit fields.

B. Epipolar Transformer

We cast a set of rays R = {ri}M1 from the camera’s viewing
direction of the reference image, where M is the number of
pixels in the reference image. Our goal is to estimate the location
of the zero-crossing point on each ray, so we can obtain the
depth map of the reference view. Compared to methods that
estimate depth on the 3D cost volume, the ray-based method
maintains the following advantages. First, since the depth map is
view-dependent, ray-based depth optimization is more straight-
forward and light-weight. Second, all the ray-based 1D implicit
fields share an identical spatial property, i.e., the monotonicity
of the SDFs along the ray direction. As a result, the learning
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Fig. 4. (a) The hypothesized points are sampled around the predicted coarse
depth to narrow down the search space of the zero-crossing position. (b) Epipolar
transformer learns the matching correlation of the pixel-wise 2D features and
aggregates these features using an attention mechanism.

would be simplified and well regularized, leading to efficient
network training and more accurate results.

Zero-Crossing Hypothesis Sampling: We perform a point
sampling to generate the zero-crossing point hypothesis on each
ray. Ideally, one could generate as many points as possible on
each ray. However, most of the points are far from the surface,
providing less informative information for the depth estimation.
To facilitate efficient training, as shown in Fig. 4(a), we adopt
the coarse depth map predicted in Section III-A and uniformly
sample K points P = {pk}K1 on the ray in the range of ±δ
around the estimated coarse depth.

Attention-Aware Cross-View Feature Correlation: The next
step is to aggregate feature for the hypothesized points based
on the multi-view image features. A naive way to achieve this
is to fetch the features from multi-view images based on the
view projection, and take the variance. However, image feature
could be easily influenced by image defects, such as specular
reflection and light changing. Naive variance considers all im-
age features equally, which might incur unreliable features and
provide incorrect cross-view feature correlation. To alleviate this
problem, we propose Epipolar Transformer to learn cross-view
feature correlation with attention mechanism (Fig. 4(b)).

To be specific, the network architecture of epipolar trans-
former contains four self-attention layers, each followed by
two AddNorm layers and one feed-forward layer. Suppose X =
Concat(FI

1,p, . . .,F
I
N,p), where Concat(·) is the concatenation

operation, {FI
i,p}N1 are the fetched multi-view image features at

3D point p. The self-attention layer of epipolar transformer is:

S = SelfAttention(Q,K,V) = Softmax(QKT )V, (1)

where Q = XWQ, K = XWK, V = XWV are the query
vector, the key vector and the value vector respectively. WQ,
WK, WV are the learned weights. Examples to demonstrate
the effects of first self-attention layer in epipolar transformer are
visualized in Fig. 3. The AddNorm layer of epipolar transformer
is:

Z = AddNorm(X) = LayerNorm(X+ S), (2)

Fig. 5. Basic network architecture of the ray-based 1D implicit field. The
hypothesized points are fed into an LSTM sequentially, to estimate the position
of the zero-crossing point as well as the SDFs.

where LayerNorm(·) is the layer normalization operation. The
output of epipolar transformer is the attention-aware denoised
multi-view feature FA

p = {FA
1,p, . . .,F

A
N,p}.

To further improve the feature quality, we concatenate the
attention-aware feature with the 3D volume feature FV

p fetched
from the 3D cost volume processed in Section III-A:

Fp = Concat(FA
μ,p,F

A
σ,p,F

A
1,p,F

V
p ). (3)

where FA
μ,p and FA

σ,p are the mean and variation of the elements
in FA

p [24], [74]. FA
1,p is the attention-aware feature at 3D point

p in the reference image.

C. Ray-Based 1D Implicit Field

LSTM Versus Alternative: Given the features of the hypoth-
esized points, the ray-based 1D implicit fields are learned with
an LSTM [22]. Crucially, we leverage two attributes of LSTM.
First, the mechanism of sequential processing inherently fa-
cilitates the learning of the SDF monotonicity along the ray
direction. Second, the property of time invariance increases
the network robustness by allowing the zero-crossing position
to appear at any place (time-step) on the ray. An alternative
to performing sequential inference is to use transformer [58].
However, we experimentally found that replacing LSTM with
transformer would not make the performance improve (see
Table VII). The reason might be that transformer, which is
designed for modeling non-local relations, does not explicitly
encode relative or absolute position information [50], making it
less suitable to our zero-crossing position searching problem.

Basic Network Architecture: The network architecture of the
1D implicit field is shown in Fig. 5. The LSTM first aggre-
gates the hypothesized points sequentially, and generates the
ray feature cK . Specifically, the formulations of an LSTM unit
at time-step k are:

z = tanh(W[Fk,hk−1] + b),

zf = σ(Wf [Fk,hk−1] + bf ),

zu = σ(Wu[Fk,hk−1] + bu),

zo = σ(Wo[Fk,hk−1] + bo),

ck = zf ◦ ck−1 + zu ◦ z,
hk = zo ◦ tanh(ck), (4)
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where Fk is the feature of point pk, hk and hk−1 are the
hidden state of point pk and pk−1 respectively, z is the cell input
activation vector, zf is the activation vector of the forget gate,
zu is the activation vector of the update gate, zo is the activation
vector of the output gate, ck is the cell state vector, W, Wf ,
Wu, Wo are the weight matrices, b, bf , bu, bo are the weight
vectors, ◦ is the element-wise multiplication, σ(·) is the sigmoid
function. The LSTM is initialized with c0 = 0 and h0 = 0.

For each hypothesized point pk, we use the ray feature cK ,
the point-wise feature Fk and its depth value dk (indicating the
location on the ray) to estimate its SDF sk using an MLP. Instead
of using the true depth value dk and estimating the true SDF sk,
we use the normalized depth value dk = k/K and the normal-
ized SDF sk = sk/smax ∈ [−1, 1], where smax is the maximal
absolute SDF value on the ray. Such normalization leads to a
significant reduction of learning complexity and improvement
of the result quality. The formulation of the SDF prediction is:

sk = MLPs([cK ,Fk, dk]). (5)

The above network predicts the SDFs of the hypothesized
points on the ray. However, post-processing, e.g., ray casting, is
still needed to find the zero-cross position. We extend our method
to estimate the zero-cross position explicitly with another MLP.
Taking the ray feature cK as input, the MLP predicts the zero-
crossing location l on the ray in the normalized 1D coordinate:

l = MLPl(cK). (6)

Local-Frustum-Based Context Aggregation: The basic net-
work architecture described above focuses on the inference
along each ray direction. This method would work in scenarios
where the images are clearly captured under satisfactory con-
ditions, e.g., in good lighting and without motion blur. This is
because in such scenarios the features aggregated along the ray
direction are able to provide sufficient information to infer the
underlying geometry. Nevertheless, there is a flurry of data [11],
[52] that does not meet these requirements, making the depth
estimation either inaccurate or infeasible. As such, specific
mortifications should be taken to allow the method to tolerate
those disadvantages.

We tackle this problem by proposing a simple yet effective
method: consider the interaction between neighboring rays and
aggregate more contextual feature to boost ray-based inference.
To achieve this, based on the basic network architecture above,
we introduce a local-frustum-based context aggregation module
that adaptively aggregates contextual features from neighbour-
ing rays. By involving more context, the ray feature cK and
3D point feature Fk in formulation (5) and formulation (6) are
expected to be more informative and thus result in more accurate
depth estimation.

To achieve this, we first extract the features of each ray
individually by the above LSTM. By projecting the ray features
to the corresponding pixels in the reference image, we generate
a feature map whose width and height are the same as those of
the reference image. For any pixel in the feature map, we set
its receptive field as a square with width t, and the center is the
pixel. Suppose ccen

K ∈ Rκ is the extracted feature of the center

pixel. κ is the feature-length. {cθK}, θ ∈ (1,Θ) are the extracted
feature of the neighbouring pixels, where Θ = (t+ 1)2 − 1 is
the number of neighbouring pixels.

A naive solution to aggregate context in the square is using
average-pooling or max-pooling. However, as not all neigh-
boring rays are equally important to the central ray, the naive
pooling would involve irrelevant features and therefore debilitate
the network training. To address this problem, we introduce
an attentional gating unit (see Fig. 6) that dynamically selects
semantically relevant neighboring rays within the local frustum
and adaptively aggregates their features, conditioned on the
extracted ray-wise features.

We first consider the variance of ccen
K and {cθK}, θ ∈ (1,Θ),

and generate a tensor R̂s = {cθK − ccen
K }, θ ∈ (1,Θ). R̂s ∈

Rκ×Θ is taken as the input to the gating unit G, estimating the
soft gating decisions Gs ∈ RΘ that indicates how relevant are
each ray to the central ray:

Gs = σ(G(R̂s) + g), (7)

where g is the Gumbel noise, the gating unit G is implemented
as a 1D MLP in our method. Note that although we do not use
any semantic supervision directly, we found that most of the
selected pixels have the same semantic labels as the center pixel
(see Fig. 20). The reason is that bothccen

K and {cθK} are high-level
features which already contain semantic information.

Then, a Gumbel-Softmax module H [25] turns soft decisions
Gs into hard decisions Hs ∈ {0, 1}Θ by replacing the softmax
with an argmax during the forward pass and retaining the soft-
max during the backward pass [32], [60]:

Hs = H(Gs). (8)

The hard decision Hs is a binary mask that indicates which ray
is semantically relevant to the center ray. The Gumbel-Softmax
module provides a mechanism that outputs a binary mask in the
forward pass and also allows the gradient to be back-propagated
in the backward pass. As is shown in Fig. 7, the gating attentional
unit is end-to-end trainable.

Having determined the semantically relevant neighboring
rays, we then aggregate context on the activated positions in
the mask. We consider contextual feature aggregation from two
aspects.

For ray feature aggregation, we take the features from the
activated positions, take the average, and add it to the initial
central ray feature:

caK =

∑Θ
θ=1(R

s ◦Hs)

‖Hs‖0
⊕ cK , (9)

wherecaK ∈ Rκ is the aggregated feature of the central ray,Rs =
{cθK}, θ ∈ (1,Θ) are the features of the neighbouring rays, ◦ is
the element-wise multiplication,⊕ is the element-wise addition,
‖Hs‖0 is the number of activated pixel in Hs.

For sample points feature aggregation, we adopt the same
mask and aggregate feature at the k-th layer of the frustum:

Fa
k =

∑Θ
θ=1(P

s
k ◦Hs)

‖Hs‖0
⊕ Fk, (10)
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Fig. 6. Attentional gating unit for the local-frustum-based context aggregation. For each camera rays of the reference image, the method estimates a mask that
denotes the semantically relevant neighbouring rays. Based on the mask, ray feature and sample points feature, with more contextual information, are aggregated
respectively.

Fig. 7. Training to estimate the mask with the Gumbel-Softmax trick. The
gating unitG (with adding the Gumbel noise) generates the soft gating decisions
Gs. The soft decisions are converted into hard decisions during the forward pass.
The soft decisions are retained for the backward pass, making the gating unit
differentiable.

where Fa
k ∈ Rκ is the aggregated feature of the k-th sampled

point in the central ray, P s
k = {F θ

k }, θ ∈ (1,Θ) is the feature
map of the neighbouring rays at the k-th layer of the frustum.

Last, we replace the cK and Fk by caK and Fa
k, respectively,

in formulation (5) and formulation (6). Therefore, the SDF
prediction and zero-crossing location are turned to be:

sk = MLPs([c
a
K ,Fa

k, dk]),

l = MLPl(c
a
K). (11)

This local-frustum-based context aggregation improves the
performance on datasets where challenging regions and low-
quality images exist. The low-quality images are typically cap-
tured due to motion blur or bad lighting conditions, which
cannot be well handled by existing methods. We found that
the attentional gating unit, without any semantic supervision,
tends to select the pixels that belong to the same object as the
central pixel. That is why we claim that the proposed method is
able to select semantically relevant neighboring rays for context
aggregation. Please see a visual illustration of its effects in Fig. 8.

Loss Functions: We adopt a multi-task learning strategy to
optimize the network. The two tasks, i.e., SDF estimation and
zero-crossing position estimation, are inherently relevant and
could reinforce each other by optimizing the following loss:

L = wsLs + wlLl + wslLsl, (12)

Fig. 8. Visual comparison of depth estimation with and without the local-
frustum-based context aggregation. Please pay attention to the results of the
challenging areas highlighted in the figure.

where Ls and Ll are the loss of the SDF estimation and the
zero-crossing location estimation, respectively:

Ls =

K∑
k=1

L1(sk, ŝk),

Ll = L1(l, l̂), (13)

where ŝk and l̂ are the ground-truth, L1(·) denotes the L1 loss
function. Lsl is a relational loss that penalizes the inconsistency
between the predicted SDFs and the predicted zero-crossing
position:

Lsl =

{
1, sal × sbl > 0
0, sal × sbl ≤ 0,

(14)

where sal and sbl are the predicted SDF of the closest two sampled
points around the predicted zero-crossing position on the ray.ws,
wl, wsl are the pre-defined weights.
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D. Implementations

We provide implementation details of the training and infer-
ence. The input image size are 640× 512, 1600× 1200, and
640× 480 for the DTU, the Tanks & Temples, and the ScanNet
datasets, respectively. The 2D U-Net consists of 6 convolutional
layers and 6 deconvolutional layers, each followed by a batch
normalization layer and a ReLU layer, except for the last ones.
The 3D cost volume is fed into a 3D U-Net which consists of
three 3D convolutional layers and three 3D deconvolutional lay-
ers. On each ray, the number of hypothesized pointsK is 16. The
feature fetching from images and volume are achieved by using
bilinear interpolation and trilinear interpolation, respectively.
The hidden dimension of z, zf , zu, zo, ck,hk are 50. MLPl and
MLPs both contain 4 fully-convolutional layers. The weights
ws, wl, wsl of multi-task learning loss function are 0.1, 0.8,
0.1, respectively. Epipolar transformer and the LSTM are jointly
trained. We use Adam optimizer with initial learning rate 0.0005
which is decreased by 0.9 for every 2 epochs. The training takes
48 hours. The inference time is about 2 seconds. We filter and
fuse the depth maps to produce 3D point cloud like previous
work [74]. The receptive field t of the local-frustum-based
context aggregation is 9. During the training of the attentional
gating unit, we use a similar strategy to [32] that penalizes the
trivial solution, e.g., simply using all the neighboring pixels.
We found this strategy would greatly facilitate the training.
The RayMVSNet++ is trained and tested on an NVIDIA Tesla
V100-SXM2.

IV. RESULTS AND EVALUATION

A. Datasets and Evaluation Metrics

We performed a series of experiments on multiple datasets to
evaluate how well our method performs on different scenarios.
The experimental datasets are:
� DTU [1]: The DTU dataset contains 79 training scans

and 22 testing scans, all captured under changing lighting
conditions. Since DTU did not provide SDF annotations,
we densely generate the point-wise SDFs from the re-
constructed surfaces [45], [74]. Besides, three challenging
test subsets focusing on regions with Specular reflection,
Shadow and Occlusion are created from the DTU test set.
These regions are manually annotated and are designed for
evaluating the method’s performance in challenging cases.
Please refer to the supplemental material, available online
for the subsets details.

� Tanks & Temples [31]: To evaluate the generality, we test
our method on the Tanks & Temples dataset which contains
large-scale complex scenes, using the trained model on
DTU without any fine-tuning.

� ScanNet [11]: The ScanNet dataset is originally collected
for the purpose of RGB-D reconstruction and scene under-
standing. Since the images are captured in various indoor
scenes under ordinary conditions, we utilize the ScanNet
dataset for examining the methods’ ability on data with
low-quality images. Specifically, we collect 31,051 image
triples for training and 1,467 image triples for testing. The

TABLE I
STATISTICS OF THE EXPERIMENTAL DATASETS

test set could be divided into two subsets: Textureless and
Large depth variation. The point-wise SDFs are generated
from the reconstructed surfaces [45], [74].

The statistics of the experimental datasets are reported in
Table I.

We use the following metrics to evaluate the performances on
different datasets, respectively:
� Accuracy & Completeness [49]: the metric that evaluates

the accuracy of the reconstructed points (i.e., how close
the reconstructed points are to the ground-truth surface)
and the completeness of the reconstructed points (i.e., how
much of the ground-truth surface is modeled by the recon-
structed points). Besides, an overall score is computed as
the mean of the accuracy and completeness to indicate the
performance considering both the two factors. We use this
metric to evaluate the performance on DTU.

� F-score [31]: the metric that evaluates the precision and
recall of the reconstructed points with a specific distance
threshold. We use this metric to evaluate the performance
on Tanks & Temples. The distance thresholds are different
for the tested scenes according to [31]. F-score is different
to the overall score in Accuracy & Completeness, as it
uses the harmonic mean, instead of the arithmetic mean,
of precision and recall, resulting in a more balanced metric
for measuring the two factors at the same time.

� Depth accuracy [34]: we use several metrics for evaluating
the estimated depth map comprehensively. The metrics
include: AbsRel, SqRel, Log10, RMSE, RMSELog, δ <
1.25, δ < 1.252, δ < 1.253, and Percentage @ x. Table V
reports the details. We use this metric to evaluate the
performance on DTU and ScanNet.

B. Performance on DTU

Evaluation on Reconstructed Point Cloud: To evaluate
RayMVSNet on DTU. we compare Accuracy & Completeness
of the reconstructed point cloud. The quantitative results are
shown in Table II. It shows that our method not only produces
competitive results in terms of Accuracy and Completeness,
but also achieves the state-of-the-art Overall performance. This
demonstrates the effectiveness of our method, especially on
balancing the trade-off between Accuracy and Completeness.
The qualitative comparisons are visualized in Fig. 9. It is shown
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TABLE II
QUANTITATIVE RESULTS ON THE DTU DATASET

Fig. 9. Visual comparison of the reconstructed point cloud by RayMVSNet
and the baselines. Please pay attention to the results of the challenging areas
highlighted in the figure.

Fig. 10. Visual comparison of the estimated depth map by RayMVSNet and the
baselines. Please pay attention to the results of the challenging areas highlighted
in the figure.

that our method achieves high-quality reconstruction in various
scenarios. In particular, our method outperforms the baselines in
scenes with textureless regions, heavy occlusion, and complex
geometry.

Evaluation on Challenging Regions: To further demonstrate
our advantage, we compare RayMVSNet with existing works, in

Fig. 11. Quantitative comparisons on the depth map prediction of the
whole DTU test set (a) and the challenging test subsets: Specular reflection
(b), Shadow (c) and Occlusion (d). Ours represents the proposed RayMVSNet.
The percentage (Y -axis) represents the ratio of the pixels whose depth prediction
error is smaller than the specific error thresholds (X-axis).

terms of the predicted depth map. The quantitative comparisons
on the whole DTU test set (Fig. 11(a)) and the challenging
subsets (Fig. 11(b), (c), and (d)) are reported. The Percentage@ x
metric is used. The percentage (Y -axis) represents the ratio of the
pixels whose depth prediction error is smaller than the specific
error thresholds (X-axis). Higher percentages represent better
performances. It is clear that our method outperforms all the
baselines in all error thresholds. Crucially, our method is more
general and robust in challenging cases as shown in Fig. 10,
thanks to the prior learnt from the ray-based 1D implicit field.

C. Performance on Tanks & Temples

We compare our method with the baselines on Tanks &
Temples. Following the protocol of previous work [19], we use
the network trained on DTU. F-score is the evaluation metric.
The quantitative results are shown in Table III. RayMVSNet
achieves the best performance, demonstrating the generality
of epipolar transformer and ray-based 1D implicit field on
large-scale scenes. RayMVSNet++ outperforms RayMVSNet
on several test scenes while maintaining comparable mean per-
formance to RayMVSNet. This is because most of the images
in Tanks & Temples are captured under good conditions, e.g.,
in sufficient and stable lighting conditions without motion blur,
which RayMVSNet is sufficient to handle. RayMVSNet++ is
inferior to the baseline of D2HC-RMVSNet [71] in the scenes
with large planar regions, such as Horse and Light house. The
reason might be that D2HC-RMVSNet adopted a hybrid recur-
rent regularization module on the cost volume which provides
a mechanism to implicitly involve the structural prior of planar
regions for performance improvements.

D. Performance on ScanNet

Evaluation on Depth Estimation: We first evaluate our method
in terms of depth estimation on ScanNet. The dataset contains
low-quality images, so it is especially suitable for the evaluation
of the proposed local-frustum-based context aggregation. The
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TABLE III
QUANTITATIVE RESULTS ON THE TANKS & TEMPLES DATASET

TABLE IV
QUANTITATIVE RESULTS ON THE SCANNET DATASET

Fig. 12. Visual comparisons on the reconstructed point cloud on the ScanNet dataset [11]. RayMVSNet++ achieves better reconstruction results in terms of both
accuracy and completeness, thanks to the local-frustum-based context aggregation which introduces more context to tolerate the imperfectness of the input images.

evaluation metrics for depth estimation were adopted. In this ex-
periment, we set the receptive field t of the local-frustum-based
context aggregation as 9 for RayMVSNet++. The results are
reported in Table IV. We see RayMVSNet++ achieves the best
performance in all metrics over existing methods. This demon-
strates that RayMVSNet++ could tolerate the imperfection on
the input images, i.e., motion blur or inferior lighting condi-
tions. In particular, RayMVSNet++ outperforms RayMVSNet,

confirming our motivation of developing RayMVSNet++, i.e.,
aggregating context on challenging regions and low-quality
images exist. The visual comparisons on depth estimation are
provided in Fig. 13.

Evaluation on Reconstructed Point Cloud: We also evaluate
the quality of the reconstructed point cloud produced by our
method. The Accuracy & Completeness metrics are adopted. As
reported in Table VI, RayMVSNet++ achieves the best overall
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Fig. 13. Visual comparisons on the estimated depth on the ScanNet dataset.
It shows that RayMVSNet++ achieves more accurate depth estimation in the
challenging regions as highlighted. The RMSE (m) is reported on the upper-left
of each example.

TABLE V
EVALUATION METRICS FOR DEPTH ESTIMATION

TABLE VI
QUANTITATIVE RESULTS ON THE SCANNET DATASET

performance, which is consistent with the evaluation on depth
estimation. We provide examples of visual comparisons on the
reconstructed point cloud in Fig. 12.

Evaluation on Challenging Regions: We also study how
our method performs in challenging regions to understand its
effectiveness better. The experiment is conducted on the two
subsets, i.e., Textureless and Large depth variation. Percentage
@ x is the evaluation metric. Fig. 14 reports the results. We see
RayMVSNet++ outperforms all the baselines in all test subsets
with all error thresholds (X-axis). Notably, RayMVSNet++
outperforms the state-of-the-art methods by a large margin with

Fig. 14. Quantitative comparisons on the depth map prediction of the chal-
lenging test subsets in ScanNet: Textureless (a), Large depth variation (b). Ours
represents the proposed RayMVSNet++. The percentage (Y -axis) represents
the ratio of the pixels whose depth prediction error is smaller than the specific
error thresholds (X-axis).

Fig. 15. Visual comparisons on the Textureless test set in the ScanNet dataset.

Fig. 16. Visual comparisons on the Large depth variation test set in the
ScanNet dataset.

an error threshold 0.2 mm. We visualize the examples of the
challenging regions in Figs. 15 and 16. Note that the depth
estimation on the highlighted regions is extremely difficult due
to the textureless surfaces and the large depth variation.

E. Ablation Study

In Table VII, we conduct ablation studies to quantify the
efficacy of several crucial components in RayMVSNet and
RayMVSNet++. Unless specifically mentioned otherwise, the
experiments are conducted on the DTU dataset.
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TABLE VII
ABLATION STUDIES OF RAYMVSNET

Feature Aggregation: The cross-view feature aggregation is
a key component of RayMVSNet. To evaluate the importance,
we compare the full method to several baselines without some
specific component: w/o epipolar transformer, w/o 2D image
feature and w/o 3D volume feature. To be specific, w/o epipolar
transformer denotes the baseline that discards the epipolar trans-
former and uses the fetched multi-view featuresFI

p instead of the
aggregated attention-aware feature of epipolar transformer FA

p

in equation (3). w/o 2D image features represents the baseline
that discards the multi-view 2D image feature FA

μ,p, FA
σ,p, and

FA
1,p in equation (3). w/o 3D features is the baseline that discards

the 3D volume feature FV
p in equation (3). It clearly shows that

all these baselines make the performance decline. It is worth
noting that w/o epipolar transformer achieves a lower com-
pleteness score, indicating epipolar transformer could make the
reconstruction complete by providing more reliable cross-view
correlations. We also compare our epipolar transformer to other
multi-view feature aggregation methods. In the experiment of
vis-max feature aggregation, we replace the epipolar transformer
with the visibility-aware max-pooling feature aggregation [8].
The result indicates epipolar transformer is a better solution.

Ray-Based Inference: Our method learns the 1D implicit field
by the ray-based inference. To show its necessity, a straightfor-
ward baseline is to learn the implicit field in the 3D space of
the reference frustum, such that there is no ray-based inference.
This baseline adopts the same cross-view feature aggregation
as the full method, and predicts the SDF of sampled points
in the reference frustum by using an MLP. The depth map is
then generated by a ray-casting algorithm from the predicted
SDFs. Unsurprisingly, experiments show this network is hard
to converge and leads to low quantitative performance, which
suggests that the ray-based 1D implicit field indeed simplifies
the learning and is suitable to the MVS problem.

Other Ray-Based Implicit Field Models: In order to reveal
the need of the proposed LSTM, we compare our method
against several baselines with alternative models of process-
ing sequential data. To be specific, we study the effects of
replacing the LSTM with average pooling, max pooling, and
Transformer [58], respectively. The Ray with average pooling
and the Ray with max pooling baselines aggregate ray feature
by average pooling and max pooling over all sampled points,
respectively. The aggregated features are then used to predict the

Fig. 17. Mid-layer feature map t-SNE visualization of the w/o SDF prediction
baseline (a) and the full method (b) for the green segment marked in the scenes
in (c).

TABLE VIII
ABLATION STUDIES OF RAYMVSNET++

zero-crossing location. The point-wise SDF predictions are also
performed as an auxiliary task. The result shows that our method
outperforms all the baselines. In particular, the performance
drops significantly with the Ray with average pooling and the
Ray with max pooling, implying that the modeling of ray-based
1D implicit field is a non-trivial task. The Ray with Transformer
is inferior to the full method, in terms of the Overall score,
confirming that LSTM is more appropriate to our problem.

No SDF Prediction: The SDF prediction is an auxiliary task
in RayMVSNet. We demonstrate its influence by turning it off
and comparing to the full method. The performance of w/o SDF
prediction baseline is inferior to the full method, demonstrating
the joint training of SDF prediction and zero-crossing position
prediction is indeed helpful, due to the extra supervision of SDF.
Examples are visualized in Fig. 17 which compares the mid-
layer features of the full model and the baseline without SDF
prediction. We can see that the mid-layer features of the full
method, with SDF supervision, maintain a better monotonicity
along the ray direction, resulting in more accurate predictions.

Alternative Multi-View Aggregation: We conduct an experi-
ment on replacing our epipolar transformer with the visibility-
aware multi-view feature aggregation method [8]. The results
show that our method outperforms the alternative. This reveals
the fact that attention mechanisms are indeed helpful to our
multi-view feature aggregation task.

Local-Frustum-Based Context Aggregation: Frustum context
aggregation is at the core of the proposed method. To reveal the
effectiveness, we conduct several ablation studies by removing
either the entire module or some key components. The exper-
iments are conducted on the ScanNet dataset. The results are
reported in Table VIII. We can make the following conclusions.
First, the decline in performance on the baseline without the
entire local-frustum-based context aggregation module (w/o
frustum) indicates the proposed module is necessary. Second,
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Fig. 18. Sensitivity to coarse depth quality. The percentage of pixel-wise depth
predictions whose error is smaller than 1 mm (a) and the overall score of point
cloud reconstruction (b) are reported.

Fig. 19. Sensitivity to the width of the receptive field. The RMSE on the
Textureless and Large depth variation test sets are reported. In general, we found
our method is generally robust and not very sensitive to the width. It achieves the
top performance when the width of the receptive field t = 13 and 9, respectively.

Fig. 20. The effectiveness of the gating unit in the local-frustum-based context
aggregation. We see the gating unit is able to successfully select the semantically
relevant pixels with different width of the receptive field.

the baseline that uses all context in the receptive field without
a selection by the gating unit (w/o gating unit) leads to a rela-
tively inferior performance, demonstrating the adaptive context
selection is useful. Third, by using the soft decisions during
both the forward and backward pass (w/o Gumbel-Softmax), the
performance drops especially on theRMSE andp@0.2metrics.
This is consistent with the conclusions of some recent methods
that also unitized the Gumbel-Softmax trick [32], [59], [60].

F. Sensitivity to Coarse Depth Quality

We show our method is robust to the incorrectness of coarse
depth prediction by conducting a pressure test. In the exper-
iment, we add Gaussian noise to the predicted coarse depth
maps, during both the training and testing phases. We report the
performance of the depth map prediction and the point cloud
reconstruction on DTU. Fig. 18 shows RayMVSNet is robust to
moderate perturbation (noise standard deviation≤ 0.4 mm). It is
interesting to see that the quality of depth map prediction slightly

Fig. 21. The errors in depth estimation on the rays whose ground-truth depth
is outside the enlarged searching region. We see that ray-based inference is able
to improve the accuracy, demonstrating its ability to handle inaccurate coarse
depth estimation.

increases when moderate noise is added. This demonstrates that
data augmentation such as modest perturbation to coarse depth
is helpful for training a more generalizable RayMVSNet. More-
over, we conduct experiments of replacing the MVSNet with
other MVSNet variants, e.g., UCS-MVSNet, Fast-MVSNet, and
CVP-MVSNet, for coarse depth estimation. We found consis-
tent improvement of depth estimation for the alternative back-
bones. In particular, our method with a UCS-MVSNet backbone
achieves a 0.326 overall score on the DTU dataset, which is
slightly better compared to the original RayMVSNet.

G. Sensitivity to Width of Receptive Field

We also test RayMVSNet++ using different widths of the
receptive field in the local-frustum-based context aggregation.
We train our method on ScanNet with different width and test
the trained models on the Textureless and Large depth variation
test sets. The RMSE are showed in Fig. 19. When t = 1, the
method essentially equals to the original RayMVSNet [67].
It shows that the local-frustum-based context aggregation is
indeed helpful on ScanNet with more challenging examples. In
particular, RayMVSNet++ is robust when t ≥ 7, demonstrating
our method is not sensitive to the parameter. It achieves the top
performance when t = 13 and 9, respectively. It shows that the
context across large neighboring pixels is more significant to
the depth estimation in the textureless regions. Fig. 20 provides
some examples of how the attentional gating unit performs
with different widths of the receptive field. We have also tried
increasing the width of the receptive field on DTU. However, we
do not see significant performance improvements. This verifies
the idea that the local-frustum-based context aggregation is only
helpful to challenging datasets with low-quality images caused
by poor lighting conditions or motion blur.

H. Handling Inaccurate Coarse Depth

Despite the conservative parameter settings, a small propor-
tion of the true depth might fall outside of the search space in-
duced by the estimated coarse depth. Although such cases are the
minority (< 3%), our method is able to alleviate this problem by
estimating the relative location l on the ray. In such cases, during
the ray-based inference, the estimated relative location l would
be outside the enlarged searching region [0,1]. Since those cases
exist in both the training and testing phases, our method is able
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Fig. 22. Gallery of the reconstructed point cloud on (a) Tanks & temples, (b) BlendedMVS, (c) DTU, and (d) ScanNet. In (d), the scenes in the rectangles with
solid line represents the reconstructed point cloud of the whole scene observed from the top view.

to learn to estimate those by the regression in equation 6. Fig. 21
provides visualizations of the depth estimation accuracy before
and after the ray-based inference on the rays whose ground-truth
depth is outside the enlarged searching region. We see that our
method is able to improve the accuracy, demonstrating its ability
to handle inaccurate coarse depth estimation. Note that the errors
shown in the figure are determined by both the accuracy of
depth estimation itself and the range of the enlarged searching
region. We set the range of the enlarged searching region as
20 mm in DTU, 1000 mm in Tanks & Temples, and 600 mm in
ScanNet.

I. Qualitative Results

We visualize the qualitative results of our method on several
datasets in Fig. 22. Note that our method is able to reconstruct
large-scale scenes with fine-grained geometry details, such as
the highlighted regions.

V. CONCLUSION AND DISCUSSION

We have presented RayMVSNet++, which learns to directly
optimize the depth value along each camera ray. An epipolar
transformer is designed to enable sequential modeling of 1D
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ray-based implicit fields, which essentially mimics the epipolar
line search in traditional MVS. The ray-based approach demon-
strates significant performance boost with only a low-res cost
volume. In particular, a local-frustum-based context aggregation
is proposed to extend the receptive field of the ray-based model,
leading to more accurate and robust predictions. The method
has been demonstrated to be effective on three public datasets,
achieving state-of-the-art performance.

Our method has the following limitations. First, although we
have demonstrated the method is robust to the coarse depth qual-
ity, there is still a small proportion of challenging regions whose
depth cannot be accurately estimated due to the large error in the
coarse depth prediction. Second, our method relies on accurate
camera poses. For scenarios that do not meet this requirement,
our method cannot produce accurate outputs, since it cannot
optimize the camera pose and the 3D points simultaneously.

An interesting future direction is to further enhance the ray-
based deep MVS approach so that cost volume convolution could
be completely saved. In most deep MVS works, 3D point cloud
is recovered from the estimated depth map as post-processing.
Therefore, we would also like to study the end-to-end optimiza-
tion of 3D point clouds [51]. Moreover, our method assumes the
camera poses are given, it is interesting to explore estimating
the camera pose [3] and reconstructing scene/object surfaces in
a uniform framework, such that the two tasks would boost each
other.
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