
Efficient IPv6 Router Interface Discovery
Tao Yang and Zhiping Cai

College of Computer Science and Technology, National University of Defense Technology, China
E-mails: {yangtao97, zpcai}@nudt.edu.cn

Abstract—Efficient discovery of router interfaces on the IPv6
Internet is critical for network measurement and cybersecurity.
However, existing solutions commonly suffer from inefficiencies
due to a lack of initial probing targets (seeds), ultimately
exhibiting limitations on large-scale IPv6 networks. Therefore,
it is imperative to develop a methodology that enables the
efficient collection of IPv6 router interfaces with limited re-
sources, considering the impracticality of conducting a brute-
force exploration across the extensive IPv6 address space. In
this paper, we introduce Treestrace, an innovative asynchronous
prober specifically designed for this purpose. Without prior
knowledge of the networks, this tool incrementally adjusts search
directions, automatically prioritizing the survey of IPv6 address
spaces with a higher concentration of IPv6 router interfaces.
Furthermore, we have developed a carefully crafted architecture
optimized for probing performance, allowing the tool to probe at
the highest theoretically possible rate without requiring excessive
computational resources. Real-world tests show that Treestrace
outperforms state-of-the-art works on both seed-based and seed-
less tasks, achieving at least a 5.57-fold efficiency improvement
on large-scale IPv6 router interface discovery. With Treestrace,
we discovered approximately 8 million IPv6 router interface
addresses from a single vantage point within several hours.

Index Terms—IPv6, Internet-wide Scanning, Network Mea-
surement

I. INTRODUCTION

The growing accessibility of IPv6-capable devices reflects
the extensive deployment of IPv6 and signals the onset of an
IPv6 era on the Internet. Since 2012, Google’s users access
the services via IPv6 has experienced a significant surge,
skyrocketing from below 1% to reach a remarkable 40% [1]. A
significant proportion of the top websites, currently estimated
at 21.1%, have already adopted IPv6 at the time of writing
this paper [2], [3].

The IPv6 routing infrastructure is a crucial component of
today’s Internet architecture, making the fast collection of
its interface addresses greatly helpful for network measure-
ment and cybersecurity, as 1) network topology mappings
necessitate comprehensive coverage of router interfaces to
depict interconnectivity among Internet nodes [4], [5] and
2) IPv6 target generation [6]–[8] relies on seed addresses
from multiple sources (e.g., router interface addresses [9],
[10]) for unbiased scanning in the IPv6 address space; fur-
thermore, efficient discovery of IPv6 router interfaces enables
network and security researchers to address various issues,
including safeguarding critical infrastructure [11]–[13] and
troubleshooting network connectivity problems [14], [15], thus
minimizing network downtime and ensuring smooth system
operations, while understanding the distribution of Internet

router interfaces is crucial for applications such as anonymiza-
tion techniques [16], enhancing content distribution [17], and
network census [18].

IPv6, however, poses a challenge in this field due to its vast
address space. In IPv4 networks, a comprehensive collection
of router interfaces can be easily achieved by tracerouting all
the IPv4 addresses, and numerous outstanding related works
have made significant progress in the IPv4 field. Related
solutions commonly employ variations of traceroute tech-
niques to achieve higher probing speeds for IPv4 topology
mappings, thereby exposing the numerous IPv4 router inter-
face addresses. For example, Yarrp [19] randomly permutes
an input IP× TTL space to map paths to all IPv4 “/24”
networks in a stateless manner. Flashroute [20] builds upon
the idea originated in Doubletree [21], exploring routes in
a backward direction and ceasing probing when detecting
routing convergence. However, the direct application of the
aforementioned IPv4-oriented strategy, i.e., straightforwardly
tracerouting the entire IPv6 Internet addresses in a brute-
force manner, is considered impractical for conducting an IPv6
survey of router interfaces.

Indeed, some endeavors [11], [22] have been made in
the discovery of IPv6 router interfaces for the purpose of
achieving maximum coverage of the IPv6 routing infrastruc-
ture. Yarrpv6 [4] (a.k.a., IPv6-compatible Yarrp) employed a
randomized algorithm for probing all hops along the paths to
the given destinations, ultimately revealing over 1.3 million
IPv6 router interface addresses by utilizing a set of high-
quality seed addresses. However, this solution exhibits limi-
tations in IPv6-wide tasks of router interface discovery when
the initial IPv6 addresses are unavailable, as it is difficult to
collect a sufficient number of unbiased seed addresses on the
Internet-wide scale. This presents a challenge in achieving
comprehensive coverage of the routing infrastructures across
the IPv6 Internet. Therefore, it is imperative to develop an
IPv6 router interface discovery method on a massive scale
that eliminates the need for initial seeds, i.e., seedless.

To achieve this goal, we propose Treestrace, an asyn-
chronous tool specifically designed for fast Internet-wide IPv6
router interface discovery. Without prior knowledge of the
networks, Treestrace can simultaneously explore numerous
IPv6 prefixes, such as the global-scale IPv6 BGP prefixes [23],
to efficiently collect router interface addresses within restricted
budgets, i.e., the number of allowed probing attempts. As a
dynamic probing methodology, Treestrace considers the funda-
mental insight that expensive budgets for probing should prior-
itize areas of the IPv6 address space with higher rewards, given
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the limited practicability of probing every address or “/64”.
Instead of allocating the entirety of the probing budgets to IPv6
prefixes without discrimination, Treestrace splits the complete
process of router interface discovery into multiple phases
at a predetermined interval of budget consumption. Within
each probing round, Treestrace exercises prudent discretion
in adjusting the allocation of budgets for each IPv6 prefix by
taking into account the rewards derived from their previous
probing results. In essence, prefixes that have demonstrated
superior performance previously are allocated higher budgets,
increasing the likelihood of discovering more IPv6 router
interfaces in subsequent rounds. However, implementing the
above dynamic probing strategy is nontrivial on real-world
IPv6 networks.

Implementing sequential probing of all hops along a path to
each destination for all IPv6 prefixes, like traditional traceroute
tools, is infeasible [19]. The influx of probe packets targeting
a single IPv6 prefix within a short time would trigger packet
rate-limiting and overload the networks, leading to inconsis-
tent measurement results. Therefore, Treestrace introduces an
innovative weighted random sampling method, which can ran-
domly permute the transmission order of probe packets while
honoring the respective budgets allocated to the associated
IPv6 prefixes, without imposing excessive computational or
storage demands. To the external Internet, the probing traffic
appears to be widely distributed across all the IPv6 prefixes,
thereby avoiding overloading routers or links. More details
will be explained in § III-B.

The contribution of the paper could be summarized as
follows:

• An innovative asynchronous prober, Treestrace, has been
developed for efficient discovery of IPv6 router inter-
faces. As its implementation requires neither IPv6 seeds
nor excessive computation and storage, Treestrace can
quickly collect IPv6 router interfaces on an Internet-wide
scale with a newly proposed dynamic probing strategy.

• A novel weighted random sampling algorithm can effec-
tively promote the solution of allocating limited resources
among competing choices to maximize expected gain.
This algorithm is particularly well-suited for large-scale
Internet measurements, where efficient resource alloca-
tion is crucial.

• An address analysis of Internet-wide IPv6 router inter-
faces is fulfilled by Treestrace. Real-world tests show that
Treestrace significantly improves both the discovery rate
and efficiency of IPv6 router interface discovery com-
pared to state-of-the-art works, enabling us to discover
around 8 million IPv6 router interfaces from a single
vantage point within a few hours.

II. PRELIMINARIES

A. Background

IPv6 addressing system and routing prefix. The addressing
system employed in IPv6 differs from its predecessor, IPv4,
and is characterized by the adoption of a 128-bit address

space [24], [25], allowing for the allocation of at least one IPv6
global unicast address to Internet-connected devices. However,
the addressing of packet forwarding in IPv6 does not utilize all
128 bits of the address space [26]. Instead, the IPv6 addressing
architecture follows a hierarchical structure [25], comprising
a routing prefix, a subnet identifier, and an interface identifier,
as depicted in Fig. 1. As the basic implementation in IPv6,
primitive routers adhere to the “longest-match-first” rule when
forwarding IPv6 packets based on the routing prefix of the
destination [27]. As a result, the IPv6 addressing boundary is
fixed at a length of 64 bits [28], with the “/64” prefixes serving
as the basic unit for assigning address space size as specified
by RIPE NCC [29].

Routing Prefix Subnet
Identifier Interface Identifier

64 bits 64 bits

Fig. 1: IPv6 128-bits address, where routing prefix size varies.

IPv6 address pattern. The lower 64 bits of an IPv6 global
unicast address are assigned to the interface identifier (IID)
to identify the specific device within a network [30]–[32].
Accordingly, typical IIDs of IPv6 addresses can be categorized
into patterns as illustrated in Tab. I, where other patterns (e.g.,
embed-Port or embed-wordy) are quite rare in our results.

TABLE I: Typical IPv6 Address IID Patterns

Patterns IID Examples Comments

EUI64a 0250:56ff:fe89:49be embed MAC address 00:50:56:89:49:be
and then flip 7th bit

Embed-IPv4 0012:0122:0126:0072 embed IPv4 address
12.122.126.72

Low-byte 0000:0000:0000:f1b7 all zeros except the lower bytes
Pattern-bytes 0021:2222:0001:0001 more than two bytes of zeros
Randomizedb 10de:51e8:eb66:7583 pseudorandom
a: The first three bytes represent Organizationally Unique Identifier [30].
b: Privacy Extensions for Stateless Address Autoconfiguration [31].

ICMP rate-limiting. This is a necessary function for IPv6
nodes to control the generation of ICMP error messages,
and its widespread implementation effectively reduces the
risk of network flooding with ICMP packets [33]. However,
aggressive ICMP rate-limiting in IPv6 presents challenges for
traceroute-based measurements, e.g., router interface discov-
ery [4], [11], [14]. Therefore, a well-designed approach is
needed to manage probing traffic and mitigate inconsistent
measurement results caused by ICMP rate-limiting.

Interaction-based measurement. It, also known as the re-
inforcement learning-based network measurement, has been
widely employed in network scanning methods such as
6Hit [6] and 6Scan [7], [34]. 6Hit pioneeringly utilized the
concept of reinforcement learning for IPv6 target generation,
resulting in significant improvements in active IPv6 address
discovery. Similarly, 6Scan incorporated the reinforcement
learning algorithm into an asynchronous scanning tool, greatly
enhancing scanning efficiency. In summary, interaction-based
network measurement prioritizes the exploration of those high-
reward targets, enabling optimizing cost-effectiveness through
cautious resource allocation and redundancy elimination.
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B. Related Works

Currently, two production measurement platforms, CAIDA’s
Ark [35] and RIPE Atlas [36], actively engage in continuous
IPv6 topology mapping. These systems utilize traditional tools
(i.e., traceroute6 and scamper [37]) for sending probes directed
towards the ::1 address in each IPv6 prefix listed in the global
BGP table (with CAIDA Ark additionally probing a random
address within each prefix). From CAIDA Ark databases
which performed the measurements from multiple vantage
points in July 2023, approximately 400K unique IPv6 router
interfaces were extracted. In 2015, Rohrer et al. [5] uniformly
sampled the IPv6 Internet by tracerouting to an address
within every “/48” in all the announced “/32s”, in order to
characterize the distribution of IPv6 interface addresses in the
wild, uncovering 128K router interfaces with 400M probes
(traces). Inspired by Zmap [38], Yarrpv6 [4] introduced a
stateless probing technique, significantly enhancing the paral-
lelism of its random probing strategy, thereby collecting over
1.3M IPv6 router interface addresses. However, this design
necessitates an increase in the volume of required probes,
because the absence of state hampers the prober’s ability to
effectively utilize response feedback for adjusting its probing
direction. Consequently, Yarrpv6 exhaustively sends probes
to every possible hop for each destination, disregarding the
uneven distribution of interface addresses. On a side note,
FlashRoute [20], a Doubletree-based asynchronous traceroute
tool exclusively oriented towards IPv4 topology, has been
enhanced by its developers to explore individual IPv6 ad-
dresses [39], although there is not yet literature reporting
this. However, the Doubletree strategy [21] for removing
redundancy is not highly practical for discovering IPv6 router
interfaces without the IPv6 hitlists, which will be discussed in
§ V.

C. Router Interface Discovery Model

In order to avoid potential misconceptions arising from
a stereotypical understanding of IPv4 networks, the model
of router interface discovery utilized by Treestrace can be
presented as following: Considerring the 64-bit addressing
boundary [28] (see § II-A), Treestrace would not typically
expect that traceroutes to multiple addresses within the same
“/64” will yield different topologies or router interfaces,
as indicated by related studies [4]. Therefore, a probe in
Treestrace can be uniquely defined by a combination of a
“/64” and an initial Hop Limit value, namely probed pair
⟨/64, Hop⟩. By selectively traversing such a /64× Hop space
within the budget limitation, Treestrace can efficiently produce
the probe packets located into the expected IPv6 areas, which
are explained in detail in § III.

Upon the selection of a probed pair, the ensuing matter
involves the creation of a 64-bit IID to accompany the provided
“/64” for the purpose of establishing a comprehensive IPv6
address, designated as the probing destination. Treestrace
employs a series of predetermined rules to generate IIDs, with
the objective of augmenting the number of available bits for
probe encoding, thereby expanding the measurement capacity

of Treestrace, as delineated in § III-A. Additionally, majority
of destination addresses in Treestrace’s probes remain inactive,
thereby enabling us to concentrate solely on the ICMPv6
error responses (Destination Unreachable or Time Exceeded)
received from router interfaces. Therefore, this simplifies the
probing logic of Treestrace.

Some related works, such as CAIDA Ark [35] or
Yarrpv6 [4], commonly employed IPv6 addresses with “low-
byte1” IIDs (::1 with zero compression) as the probing
targets for this traceroute-like measurement. However, we
intentionally exclude them to ensure that Treestrace’s Internet-
wide measurements remain non-intrusive, as these “lowbyte1”
addresses are typically assigned to devices hosting critical user
services.

Based on the aforementioned model, we can efficiently
perform the discovery of IPv6 router interfaces, by probing
the generating IPv6 addresses with corresponding Hop Limit
values, provided that the probe states are effectively main-
tained and the probing traffic is well managed. We are thus
committed to accomplishing these goals in this work.

III. TREESTRACE DESIGN

Treestrace tool is optimized to undertake the simultaneous
exploration of a broad expanse of IPv6 prefixes, aiming to
maximize the collection of IPv6 router interface addresses
within limited probing budgets. It is written in Go, exclusively
utilizing the native standard library, and is compatible with
various UNIX-like platforms.

As such capability has not yet been achieved in the realm of
IPv6 router interface discovery so far, the main innovation of
Treestrace can be summarized as follows: While preserving
the advantage of high parallelism through the decoupling
of sending and receiving tasks, Treestrace also maintains
the capability to adjust the probing direction by leveraging
feedback from prior responses.

Fig. 2 presents the system architecture of Treestrace. The
receiving task can be swiftly implemented by performing
duplicate elimination (using Bloom filters) and asynchronously
updating reward records for the corresponding prefixes (us-
ing atomic operations) upon capturing the response packets.
However, the implementation of the sending thread poses
a significant challenge. It must effectively manage probe
states for a large set of IPv6 prefixes and ensure the rapid
transmission of probing packets to fully utilize the available
bandwidth. To address this challenge, Treestrace introduces a
series of novel techniques. The following sections will outline
the implementation details for each of these mechanisms.

A. Probe Encoding

Similar to previous asynchronous tools (e.g., Yarrp [19] and
Zmap [38]), we encode all the necessary measurement infor-
mation into the probe packet header, which is then returned
in the response packets. In the case of ICMPv6 echo request
packets, it is worth highlighting that the fields of ICMPv6
Identifier and Sequence Number can be modified to carry
additional information, providing a potential capacity of up
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Weighted Sampling(§ III-B)

...

PCS Table

PCS
PCS

...

stub uint64

Prefix Control State(§ III-C)

mask uint64
reward uint64
offset uint64

left *Node

Node

right *Node
score float64
index *PCS

Bloom Filter

atomic.Add(reward,1)

output

offset← (offset + 1)

Packet Generation (§ III-D)

stub

offset

index

Sending Thread Receiving Thread

Network Interface Controller

Fig. 2: The architecture of Treestrace.

to 32 bits for probe encoding purposes, as depicted in Fig. 3.
Specifically, we allocate the lower 8 bits to represent the initial
Hop Limit of the probe, while the remaining 24 bits are used
to indicate the index of the originating prefix of the probe.

Furthermore, Treestrace incorporates the interface identifiers
(IIDs) of destination addresses to facilitate supplementary
probe encoding, thus enabling additional measurement func-
tions. Specifically, the 64-bit IID of a destination address could
be divided into three distinct components: a 32-bit timestamp
is utilized for round-trip-time (RTT) computation, a 16-bit
instance identifier ensures that received packets are authentic
responses to Treestrace’s probes, and a 16-bit checksum is
calculated over the upper 112 bits of IPv6 targets, thereby
enabling the detection of any modifications to the IPv6 des-
tination address, e.g., due to the middleboxes. Actully, our
results have identified a negligible quantity of responses (not
zero) with modified addresses.

In real-world networks, it is not uncommon for routers
to deviate from the requirements outlined in RFC4443 [33]
and discard the probe payload when generating ICMP
Unreachable/Time-exceeded error messages. This behavior
can present challenges in attributing the discovered IPv6
router interfaces to corresponding IPv6 prefixes if the probing
information (e.g., Prefix Index or Hop Limit) were encoded
in the volatile payload of probing packets. To overcome this
issue, Treestrace has been specifically designed to integrate
all the essential information for router interface discovery into
the headers of probe packets, as discussed above. Addition-
ally, the reserved payload of the probe packet is exclusively
utilized to include the website for declaring the purpose of
our measurements (see Fig. 3). This approach ensures that
the probing information can be extracted from the responses
received from IPv6 router interfaces, thereby eliminating the
need for extensive storage and excessive computation required
to maintain this probe information locally.

B. Dynamic Probing Strategy
The development of the Treestrace tool is driven by the

fundamental facts outlined below: it is nearly impossible to
brute-force explore every probed pairs ⟨/64, Hop⟩ (see § II-C)
to achieve a comprehensive collection of IPv6 router interfaces
on the real-world networks. Therefore, a viable methodology
for approximating the ground truth is to pursue the maximum
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Version Traffic Class Flow Label

Payload Length Next Header Hop Limit
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128-bits Destination Address (Probing Target)

ICMPv6 ID/Src Port ICMPv6 Seq/Dst Port

Timestamp

Instance Identifier Target Checksum

Type Code Checksum

Serializated Bytes of
https://6Seeks.github.io/Treestrace/

E
ncoding

Fig. 3: Treestrace encodes information in the (line-filled) fields
of probing ICMPv6 packets.

number of router interface addresses with a limited probing
budget.

Assuming, without loss of generality, that the input for
Treestrace consists of n multisize IPv6 prefixes whose address
volumes (number of unique addresses) and probing budgets
are respectively {v1, . . . , vn} and {x1, . . . , xn}. Formally,
the problem can be restated as a combinatorial optimization
problem [40], whose model P = (X, f, g) comprises of:

• A finite set of candidate solutions X , that are defined
over a series of vectors of decision variables x ∈ X .
Specifically, the ith prefix of the solution x is allocated
with a total of xi probing budgets for a particular solution,
represented by x = {x1, . . . , xn}.

• The object function f , that produces the number of
discovered IPv6 router interfaces f(x), given a solution
vector x ∈ X .

• The constraint function g, that presents the limitation of
probing budget b in this task, i.e., g(x) : xi+· · ·+xn ≤ b.

Accordingly, the goal of IPv6 router interface discovery can
be formulated as follows: maximize f(x), subject to g(x).
And, it can be concluded that a solution x∗ ∈ X is the global
optimum if and only if the following condition holds: ∀x ∈
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X, f(x∗) ≥ f(x), g(x) < b.
Obviously, there are various allocation strategies for the

probes sent to different prefixes. It is important to note that
the random strategy-based prober, such as Yarrpv6 [4], [19],
generates a solution denoted as xs = xs

1, . . . , x
s
n where

xs
i ∝ vi. However, this solution is unlikely to be the global

optimum due to the uneven distribution of router interface
addresses in the IPv6 address space. A more optimal approach
would involve allocating the budget to prefixes based on
their respective global rewards. However, the lack of prior
knowledge about the distribution of routing devices in the IPv6
network makes it impossible to determine the actual global
rewards of the input prefixes.

To resolve it, Treestrace utilizes an interaction-based prob-
ing strategy, which leverages feedback from previous probes
to dynamically adjust the allocation of the probing budget
across all prefixes. In this approach, prefixes with high rewards
are prioritized for subsequent probes, while prefixes with
low rewards are probed more cautiously. While the concept
is straightforward, its implementation presents a significant
challenge as it necessitates meticulous adjustment of budget
allocation and effective management of the probing traffic, all
while maintaining a high probing rate.

Algorithm 1 Weighted Sampling based on Huffman Coding

Require: Root of coding tree R

Ensure: Leaf node of coding tree L incorporating the exact
prefix for probe generation

1: C← R # pointer of current node
2: I← Rand.Uint64() # initialization of randam bits
3: repeat
4: if I⊗ 1 = 0 # bitwide xor for last bit then
5: C← C.left
6: else
7: C← C.right
8: end if
9: I← I× 2−1 # bitwise right shift

10: until C.isLeaf()
11: L← C

In Treestrace, a complete binary tree is utilized for the
solution, as illustrated in Fig. 4, where each leaf node rep-
resents a distinct prefix. This structure is inspired by the well-
known Huffman coding tree, which is designed to transform
assigned probabilities associated with the leaf nodes into
varying coding lengths, as reflected by their depth in the binary
tree. Conversely, we can also derive the probability from the
leaf nodes in the tree, enabling weighted random sampling.
Specifically, we generate a random bit stream and sequentially
follow its bit values to traverse the binary tree until we reach
a designated leaf node, as illustrated in Algorithm 1. This leaf
node contains the exact prefix used to generate a probe packet
during this sampling process. In this scenario, the random walk
starting from the root node is more inclined to encounter high-
reward prefixes, which are located on the shallow nodes (e.g.,
Prefix No. 1 with a score of 7.67), rather than the low-reward

ones hidden deep within the binary tree (e.g., Prefix No. 7
with a score of 0.18), as depicted in Fig. 4.

After proposing an efficient weighted random sampling
approach, the remaining issue pertains to the rapid re-
initialisation of the corresponding binary tree according to the
new weights, each time we consumed k probes (empirically
K = 100000). Estimating the exploration value of a prefix by
directly using the ratio between the reward (i.e., the number
of router interface addresses ρ) and the cost (i.e., the number
of probes σ) is inappropriate due to the order-of-magnitude
difference in the address volumes between prefixes of varying
sizes. Hence, the prefix score is denoted as ρ

log2 σ for the
corresponding nodes, which are then initialized into a priority
queue (i.e., a minimum heap) as shown in Algorithm 2.
Iteratively, the priority queue pops two nodes with the minimal
scores, merges them into one, and reinserts the merged node
back into the queue until only one node remains, i.e., the
root node of the coding tree. According to the aforemen-
tioned construction process of the coding tree, the sampling
probability can be approximately expressed as 2−⌈log2(1/f)⌉

and at least as 2−2⌈log2(1/f)⌉ for a given prefix with a score
percentage of f [41]. Moreover, the sampling process has a
complexity that is bounded by a constant (specifically around
64, due to the 64-bit addresseing boundary in IPv6), denoted
as O(1). Additionally, the time and space complexities of
constructing the coding tree are both O(n log n), making
it easily implemented within several milliseconds given the
capabilities of modern computers.

Algorithm 2 Huffman Coding Tree Initialisation

Require: A set of node {N1, N2, . . . , Nn}
Ensure: Root node of coding tree R

1: H← Heap({N1, N2, . . . , Nn}) # min heap priority queue
2: while H.size() > 1 do
3: N← Node() # initial a new (internal) node
4: N.left = Nleft ← H.pop() # pointers of child nodes
5: N.right = Nright ← H.pop()
6: N.score← Nleft.score+ Nright.score
7: H.push(N)
8: end while
9: R← H.pop()

Unlike existing interaction-based approaches that distribute
budgets to prefixes based solely on the Boltzmann distribution
derived from their rewards [6], [34], Treestrace proposes a
weighted random sampling technique that offers enhanced
management of probing traffic. In traceroute-like measure-
ments for router interface discovery, it is crucial to evenly
distribute the probing traffic since exploring the route of each
target “/64” within a specific prefix necessitates dozens of
probe packets. Nonetheless, after allocating the budget, the
existing interaction-based solutions send probes in a sequential
manner, one prefix at a time, which might lead to inconsis-
tent measurement results due to the influx of probing traffic
triggering the packet rate-limiting of the target networks. To
tackle this issue, existing approaches have no choice but
to employ a buffer for the transient preservation of probe
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# Prefix Score Bit Stream Selection Probability

1 2a02:60::/28 7.67 *******0 2−1

2 2001:278::/32 2.29 ******11 2−2

3 2408:2000::/24 0.77 ****0001 2−4

4 2408:805c::/30 0.73 ****1001 2−4

5 2001:5000::/21 0.70 ****0101 2−4

6 2804:b:c002::/47 0.32 ***01101 2−5

7 2c0f:fd98:8110::/48 0.18 ***11101 2−5

a

12.66

1
7.67

0

b

4.99

c

2.70

d

1.50

3
0.77

0

4
0.73

1
0

e

1.20

5
0.70

0

f

0.50

6
0.32

0

7
0.18

1

1

1

0

2
2.29

1

1

Fig. 4: A Huffman coding tree for weighted random sampling
on 7 various prefixes. Note that we use the wildcard symbol
“*” to denote the varying bits.

A A A ... A B B ... B C C ... C ... ×
Packet Rate-LimitingInfluxing A Influxing B Influxing C

Sequential Sending (existing solutions)

B A C ... C B A ... A C B ... C ...
Out-of-order Sending (our solution)

Huge Buffer for Reshuffle

Fig. 5: The comparison of sending orders between existing
methods and ours, involving three IPv6 prefixes A, B and C.

packets for the purpose of reshuffling, as described in Fig. 5,
ultimately resulting in a substantial demand for storage and
time. In contrast, the dynamic probing strategy of Treestrace
inherently supports the transmission of probe packets among
the prefixes in an out-of-order manner, thereby preventing
network overload.

C. Control State

Treestrace requires control state to support its probing logic.
Static data structures. For each input prefix, it maintains

a group of states to keep track of the probing progress and
record the feedbacks of probes. Specifically, Treestrace utilizes
two uint64 integers, namely stub and mask, to define the
range of “/64s” for a specific input prefix. For example, the
given input prefix 2001:1234::/32 can be represented by
a stub (0x2001123400000000) and a mask (0xffffffff),
thereby establishing a one-to-one correspondence between
each “/64” and a unique integer value ranging from 0 to mask.
By assigning these aforementioned states to each input prefix,
we can easily monitor the entire probing progress and perform
subsequent discovery of router interface addresses. Two other
states of the input prefixes, namely reward and offset, are
utilized to document the number of captured router interface
addresses and the number of consumed probes, respectively,
in order to estimate the prefix scores as introduced in § III-B.
In the implementation of Treestrace, to facilitate retrieval and

organization of the various prefix states, we consolidate all the
aforementioned states into a single structure, namely “Prefix
Control State” (PCS) block, as illustrated in Fig. 2. Following
this, we instantiate all input prefixes as a collection of PCS
blocks, which collectively compose a static PCS table.

Dynamic data structures. While Treestrace’s dynamic prob-
ing strategy, based on weighted sampling, can be implemented
through a random walk on the established Huffman coding tree
as illustrated in § III-B, efficiently retrieving the corresponding
PCS block when reaching a leaf node remains a significant
challenge. The straightforward approach of copying the states
of the PCS block into the associated 2-ary node may result in
out-of-sync data if the sending and receiving threads simulta-
neously modify the states of the same prefix. To address this
issue, Treestrace introduces a state of PCS index into the
node structure, decoupling the (dynamic) coding tree nodes
from the (static) PCS blocks. This ensures synchronization of
control states and eliminates the overhead of frequent copies.
As a result, Treestrace can swiftly retrieve the PCS block
corresponding to the associated prefix upon sampling a leaf
node, enabling the rapid generation of a probe packet with the
PCS index populated into the 24-bit Prefix Index fields of
its header.

Overall, the complete structure, consisting of the PCS
table and coding tree, exhibits remarkably low RAM occu-
pancy, such as approximately 700 MBytes when concurrently
conducting the Internet-wide measurements on one million
prefixes while the Route Views comprehensive databases con-
sist of only 49130 IPv6 BGP prefixes after removing the
overlaps [23]. Therefore, this amount easily falls within the
capacity of modern computers.

D. Randomized Probe Generation

Treestrace introduces the technique of randomized probe
generation to address the following issue: When a high-reward
prefix is assigned to a too shallow leaf node of the coding tree
(e.g., due to incomplete exploration convergence or significant
variations between input prefixes), there is a tendency to
repeatedly select the same prefix for generating probes within
a short period. Therefore, it is crucial to evenly distribute the
probing traffic for each individual prefix to mitigate packet
rate limitations.

Unlike the traditional traceroute technique that sequentially
probes all hops along a path to a target, Treestrace traverses the
space of /64× Hop for a given prefix in a random permutation.
Specifically, Treestrace employs the FNV-1 hash function to
encrypt the offset state (the number of probes consumed
by this prefix), with each ciphertext corresponding to a unique
probed pair ⟨/64, Hop⟩, as illustrated in Fig. 6. Due to the
avalanche effect in hash function, i.e., the ciphertext changes
significantly even if the input is changed slightly, Treestrace
could send probes to a “/64” A with a Hop Limit of 12, then
to B with a Hop Limit of 7, subsequently to C with a Hop
Limit of 23, and so on until the probing budget is exhausted.
In this way, the probing traffic is spread across the entire prefix
rather than a narrow range, to the external Internet.
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offset: 0x56789abc 0x34301a17241470f5

0x15

Hop Limit

Bitwise AND 0x1f for lower 5 bits

FNV-1 Hash
0x1a180d0b920a387

Right Shift 6 Bits
⊗

Bitwise AND

mask:0xffffffff

0xb920a387

stub:0x2001123400000000

⊕

Bitwise XOR

0x20011234b920a387

Target /64

⟨0x20011234b920a387, 21⟩

Probed Pair

Fig. 6: The probe generation process of Treestrace about prefix 2001:1234::/32. Treestrace excludes probed pairs with
Hop Limit values of ≤ 1 to safeguard the local routers.

TABLE II: Active Internet-wide Topology Discovery Results With 100-Kpps Uplinks

Approach Input Router
Interfaces

Probing
Packets

Involved
ASes

Discovery Rate
(‰)

Time Cost
(Second)

Probing
Speed

Efficiency
(Num. per Sec.)

Treestrace

Hitlist Seeds

578415 1.00 × 107 4825 57.84 331.25 30.19Kpps 1746.16
Flashroute 293598 2.57 × 107 7369 11.42 1549.2 16.59Kpps 189.52
Yarrpv6 326010 8.03 × 107 7786 4.06 7743.6 10.37Kpps 42.10

Treestrace 2354716 1.00 × 108 6531 23.55 2313.7 43.22Kpps 1017.73
Treestrace

BGP Prefixes
642551 1.00 × 108 8719 6.43 1921.8 52.03Kpps 334.35

Yarrpv6 180331 1.29 × 108 8979 1.39 11840.5 10.92Kpps 15.23
Treestrace 7703499 1.00 × 109 9066 7.70 19549.8 51.15Kpps 394.04

IV. EVALUATION

We evaluate the performance of Treestrace and existing
solutions (i.e., Yarrpv6 [4] and Flashroute [39]) on real-world
networks.

A. Experiment Setups
1) Data Inputs: To establish the fair and unbiased per-

formance comparisons of real-world tests on a large scale,
incorporating two distinct IPv6 datasets as inputs is essential:

• IPv6 hitlist seeds. Gasser et al. [10], [42] provided the
IPv6 hitlist [9], which comprised about 7M active IPv6
addresses (a.k.a., seeds), obtained through active scanning
and passive collection, involving 17891 public ASes.

• IPv6 BGP prefixes. The Route Views project [23] offers
up-to-date BGP information on the worldwide routing
system, observed from backbones and locations across
the Internet. Its database contains 49130 orthogonal IPv6
BGP prefixes of various sizes, covering 30789 public
ASes.

Note that existing methods cannot explore multiple prefixes
concurrently, as they solely accept the individual addresses or
single IPv6 prefixes as valid inputs. Therefore, 40 million tar-
get addresses are downsampled from the above BGP prefixes
as input for Yarrp, following related work [4].

2) Probing Scale: Controlling the probing scale of existing
methods presents a formidable challenge due to the absence of
support for configuring probe limitations, unless modifications
are made to the number of input seeds or prefixes. Abruptly
terminating the process of router interface collection upon
reaching the budget limitation is not feasible, as it may
compromise the integrity of the measurement results obtained
by existing methods. For a fair comparison, we will not impose
any restrictions on probing packets until the baselines finish
the probing processes.

To avoid misconceptions, we assigned two distinct budgets
to each experiment for the comprehensive performance evalu-
ation of Treestrace, with the intervals for its dynamic probing
adjustment empirically set to 100K probes per round.

3) Probing Protocol: Any IPv6 packet can be utilized for
discovery of IPv6 router interface addresses, as only ICMPv6
error messages are considered valid responses from router
interfaces. Previous studies have demonstrated that probing
with ICMPv6 results in approximately 2.2% and 2.1% more
discovered interface addresses compared to using UDP and
TCP, respectively [4]. In our comparative experiments, we
utilized the ICMPv6 echo request as the probing payload
because it is designed for diagnostic purposes and is less
intrusive than UDP and TCP probes, as supported by previous
studies [11].

4) Evaluation Metric: Following the prior works [7], to
quantitatively evaluate the ability of existing methods, we
propose two metrics, namely discovery rate and efficiency.
Formally, a methodology can be proposed to discover the set
of router interface addresses, namely τ , within a limited budget
b (i.e., the number of probing packets). The discovery rate of
IPv6 router interface discovery can be expressed as |τ |

b , where
τ ⊂ A. Similarly, given the time consumption t required for
the aforementioned task, the efficiency in IPv6 router interface
discovery can be expressed as |τ |

t , where τ ⊂ A.

B. Real-world Performance

In May 2023, we conducted large-scale router interface
discovery experiments of Treestrace, employing 100K probes
per phase (see § I), for performance comparison with the base-
lines. However, Flashroute is characterized by its redundancy
elimination, using only active addresses as valid inputs. This
renders it incompatible with measuring IPv6 BGP prefixes,
thus excluding Flashroute from the performance comparison.

1) Discovery Rate: In the (seed-based) experiments using
IPv6 hitlist seeds, all the methods effectively discover the
IPv6 router interface addresses, and the redundancy elimi-
nation of Flashroute actually reduces the probe consumption
compared to the randomized Yarrpv6. However, compared
to state-of-the-art methods, Treestrace not only achieves the
highest discovery rates of 23.55‰ ∼ 57.84‰ with various
probe budgets but also discovers more IPv6 router interfaces
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with fewer measurement resources (e.g., Treestrace uncovered
over 578K router interfaces with only 10M probes while
Flashroute uncovered 293K’s using 25.7M probes). Specifi-
cally, Treestrace achieves an average 3.56-fold improvement
on discovery rate performance over existing solutions when
the seeds are available.

In the seedless experiments using BGP prefixes, the vast
search space and sparse distribution of active addresses present
challenges for existing methods (e.g., Flashroute). However,
even without active addresses as prior knowledge of the
networks, Treestrace achieves discovery rates of 6.43‰ ∼
7.70‰, which is an average 5.08-fold improvement compared
to the baseline method. Additionally, in the billion-scale ex-
periment, Treestrace reveals 7.7 million IPv6 router interfaces
within a few hours, significantly enhancing our capability for
IPv6 network measurements.

2) Efficiency: To evaluate the efficiency of Treestrace and
the baselines in real-world discovery of IPv6 router interfaces,
we also introduce the concept of “Probing Speed”, i.e., the
average probing rate throughout the entire probing procedure,
calculated as the ratio of the total number of probing packets
to the total time.

The results show that all tools performed well in terms
of probing speed, but Treestrace consistently outperformed
the others in all experiments. Specifically, Treestrace can
discover over 1000 router interfaces per second when seeds
are available, and it also maintains the high efficiency in
seedless tasks of IPv6 router interface discovery. This can be
attributed to the following reasons: 1) The dynamic probing
strategy of Treestrace automatically adjusts the direction of
router interface discovery to explore the areas of IPv6 address
spaces with higher rewards, resulting in the discovery of more
router interfaces. 2) The carefully designed optimizations in
Treestrace reduce system complexity and improve the trans-
mission of probing packets, enabling high probing speeds even
on an entry-level VPS host. In comparison to existing works,
Treestrace eventually achieved the 5.37× ∼ 9.21× efficiency
improvement on seed-based task and the 21.95× ∼ 25.87×
efficiency improvement for seedless task. This demonstrates
the utility of Treestrace for large-scale IPv6 router interface
discovery.

C. Address Analysis

In the address analysis, we integrated the results obtained
from Treestrace in each scenario, namely STreestrace for exper-
iments on IPv6 hitlist seeds and PTreestrace for experiments on
IPv6 BGP prefixes. Similarly, the baselines’ results could be
represented as SFlashroute, SYarrpv6, and PYarrpv6.

1) Major Autonomous Systems: Tab. III presents the top
10 Autonomous Systems (ASes) along with the respective
count of newly-discovered router interfaces from each result
source mentioned above. It is evident that a small number of
ASes dominated the majority of the router interfaces in the
interaction-based methods, with STreestrace standing out as the
leading AS, contributing to approximately 70% of the discov-
eries. The concentration of discovered IPv6 router interface

addresses is mainly attributed to Treestrace’s autonomous ad-
justment mechanism of the search direction, resulting in more
probing budgets assigned to those autonomous systems with
complex topological structures including numerous interface
addresses of routing infrastructures. Nevertheless, Treestrace
prioritizes the exploitation of high-reward prefixes while not
neglecting the exploration of other promising prefixes, as evi-
denced by the number of router interfaces discovered in each
Autonomous System. For example, Treestrace can discover
5187 and 14319 interface addresses in the 10th autonomous
system, respectively, which exceeds other baseline methods
in both seed-based and seedless tasks. The findings indicate
that Treestrace effectively strikes a balance between the depth
and breadth of exploration while uncovering the distribution
of IPv6 router interfaces.

To further demonstrate it, we visualized the router inter-
faces discovered by Treestrace within 197K BGP prefixes
from RouteViews using the zesplot tool [43], where each
pixel represents a BGP prefix. As depicted in Fig. 7, the
results obtained by Treestrace cover a wide range of BGP
prefixes. Additionally, PTreestrace involves more BGP prefixes
than STreestrace since it is free from the biases of initial seeds.

2) Overlaps: The overlaps of the router interfaces from dif-
ferent sources are a critical metric to evaluate the contribution
of the methods to the new discoveries of the Internet-wide IPv6
routers. For this joint overlap analysis of router interfaces,
we compare the results with the production measurement
platforms that continuously perform active IPv6 topology map-
ping, such as CAIDA Ark [35]. Fig. 8 shows that Treestrace
has contributed the most number of newly-discovered router
interfaces in both seed-based and seedless tasks of router
interface discovery, as these results have only 2% overlaps with
other methods or platforms. Furthermore, the discoveries of
existing solutions present a significant correlation with others.
For example, 31% of router interfaces in CAIDA Ark and
64% of router interfaces in PYarrpv6 have been reported in
PTreestrace. In summary, our solution exhibits an endeavor of
comprehensive survey into IPv6 router interfaces, compared
to existing works.

3) Address IID Patterns: As mentioned in § II-A, the Inter-
face Identifiers of an IPv6 address can usually be customized
by users either manually or automatically [30], [32], [44].
These interface identifiers are crucial for revealing important
information about IPv6 network assets. Therefore, the results
of address pattern classification on the discovered IPv6 router
interface addresses are presented in Tab. IV. It is evident at
once that the predominant portion of IPv6 router interfaces
discovered across all sources comprises the Low-byte ad-
dresses, whereas the Byte-pattern and Randomized addresses
constitute a minority percentage. Surprisingly, the addresses
obtained through autoconfiguration, namely EUI64, Embed-
IPv6, and Low-byte, jointly contribute to the corresponding
ratio (approximately 80%) of router interfaces in all sources,
thereby confirming the veracity of findings from the Treestrace
and baselines.
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- Number Ratio
AS3320 38600 13.15%

▲ 24740 8.43%
AS4134 16721 5.70%
AS20940 9127 3.11%
AS16276 8684 2.96%
AS4812 8587 2.92%
AS14340 8094 2.76%
AS7922 6051 2.06%
AS26101 5307 1.81%
AS714 4179 1.42%

AS36647 4109 1.40%

(a) SFlashroute

- Number Ratio
AS4812 32880 10.09%
AS4134 31207 9.57%

▲ 26503 8.13%
AS134774 14244 4.37%
AS20940 10783 3.31%
AS3320 10225 3.14%

AS16276 9437 2.89%
AS14340 8103 2.49%
AS7922 6634 2.03%

AS26101 5281 1.62%
AS714 4324 1.33%

(b) SYarrpv6

- Number Ratio
▲ 26664 14.79%

AS13335 11310 6.27%
AS4134 9800 5.43%
AS1136 4612 2.56%
AS8151 3796 2.11%
AS24560 3135 1.74%
AS174 2976 1.65%

AS45609 2912 1.61%
AS16509 2642 1.47%
AS7922 2543 1.41%
AS4837 2344 1.30%

(c) PYarrpv6

- Number Ratio
AS1136 1769690 74.34%
AS8422 319672 13.43%
AS2119 141164 5.93%
AS5607 14458 0.61%

▲ 12192 0.51%
AS9136 9885 0.42%
AS4134 7015 0.29%
AS13037 6469 0.27%

AS203953 6194 0.26%
AS7018 5807 0.24%
AS2516 5187 0.22%

(d) STreestrace

- Number Ratio
AS45609 3689317 47.23%

▲ 1387384 17.76%
AS24560 1092186 13.98%
AS8151 588444 7.53%

AS38266 542015 6.94%
AS8422 127104 1.63%

AS17072 80117 1.03%
AS29555 57426 0.74%
AS28006 35291 0.45%
AS138754 25341 0.32%
AS55836 14319 0.18%

(e) PTreestrace

TABLE III: Top 10 ASes of router interfaces discovered from each source (▲:unreported BGP Prefixes)

(a) STreestrace (b) PTreestrace

Fig. 7: All 197K BGP prefixes in RouteViews database, colored based on
the number of IPv6 router interfaces, with zesplot tool.

Fig. 8: Overlaps between IPv6 router
interfaces from all the sources for each
row.

TABLE IV: Address IID Patterns of Router Interfaces Discovered from Each Source

Source Total
Number

Address IID Pattern
EUI64 Embed-IPv4 Low-byte Byte-pattern Randomized

SFlashroute 293598 42054 (14.32%) 33326 (11.35%) 174108 (59.30%) 14457 (4.92%) 21354 (7.27%)
SYarrpv6 326010 13170 (4.04%) 34617 (10.62%) 187375 (57.48%) 15812 (4.85%) 66468 (20.39%)
PYarrpv6 180331 10358 (5.74%) 38141 (21.15%) 101977 (56.55%) 10869 (6.03%) 10869 (6.03%)

STreestrace 2379657 804547 (33.81%) 24631 (1.04%) 1107524 (46.54%) 5271 (0.22%) 435151 (18.29%)
PTreestrace 7809563 942913 (12.07%) 1084790 (13.89%) 3822918 (48.95%) 765947 (9.81%) 1188528 (15.22%)

V. DISCUSSION AND ETHICAL CONSIDERATION

Flashroute [20] adopts the Doubletree strategy [21] for
probe redundancy elimination in IPv4 network topology dis-
covery. However, in this work, we have not yet considered its
application for conserving measurement resources, mainly due
to the challenge of incorporating the Doubletree strategy into
the IPv6 domain. Specifically, this strategy relies on responses
from next-hop devices to determine the probing of hops near
the vantage point. This may not be easily achieved when the
destination of the probing packet is inactive, given the sparse
distribution of active IPv6 addresses. Furthermore, Flashroute
achieves its high parallelism and preserves Doubletree’s ca-
pabilities by assigning each target with a “destination control
block,” but this approach cannot be directly applied to the IPv6
realm due to the substantial storage requirements. Therefore,
implementing Doubletree-based asynchronous probing tech-
niques for IPv6 router interface discovery without seeds would
necessitate significant modifications and improvements to the
systems. We look forward to achieving this in the future.

We limited the probing rate to 100 Kpps to strictly en-
sure Internet citizenship, as suggested by Partridge and All-
man [45]. We incorporated the website introducing our mea-
surement purposes into the probe packets and removed any

results related to entities that explicitly refused our disclosure
requests.

VI. CONCLUSION

In this paper, we developed Treestrace, an asynchronous
probing tool with high parallelism for IPv6 router interface
discovery on a massive scale. Based on our novel weighted
sampling technique, Treestrace achieves a dynamic probing
strategy that automatically prioritizes the exploration of ad-
dress spaces exhibiting a higher density of IPv6 router inter-
face addresses. Real-world tests demonstrate that Treestrace
outperforms state-of-the-art works in both seed-based and
seedless measurements. By employing Treestrace, we discov-
ered approximately 8 million IPv6 router interface addresses
within several hours at a single vantage point. Its code is
available at https://github.com/6Seeks/Treestrace.
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