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Query-Adaptive Late Fusion for Hierarchical
Fine-Grained Video-Text Retrieval

Wentao Ma , Qingchao Chen , Fang Liu , Tongqing Zhou , and Zhiping Cai

Abstract— Recently, a hierarchical fine-grained fusion mecha-
nism has been proved effective in cross-modal retrieval between
videos and texts. Generally, the hierarchical fine-grained semantic
representations (video-text semantic matching is decomposed
into three levels including global-event representation matching,
action–relation representation matching, and local-entity repre-
sentation matching) to be fused can work well by themselves
for the query. However, in real-world scenarios and applications,
existing methods failed to adaptively estimate the effectiveness of
multiple levels of the semantic representations for a given query
in advance of multilevel fusion, resulting in a worse performance
than expected. As a result, it is extremely essential to identify
the effectiveness of hierarchical semantic representations in a
query-adaptive manner. To this end, this article proposes an effec-
tive query-adaptive multilevel fusion (QAMF) model based on
manipulating multiple similarity scores between the hierarchical
visual and text representations. First, we decompose video-side
and text-side representations into hierarchical semantic represen-
tations consisting of global-event level, action-relation level, and
local-entity level, respectively. Then, the multilevel representation
of the video-text pair is aligned to calculate the similarity score
for each level. Meanwhile, the sorted similarity score curves of the
good semantic representation are different from the inferior ones,
which exhibit a “cliff” shape and gradually decline (see Fig. 1 as
an example). Finally, we leverage the Gaussian decay function to
fit the tail of the score curve and calculate the area under the
normalized sorted similarity curve as the indicator of semantic
representation effectiveness, namely, the area of good semantic
representation is small, and vice versa. Extensive experiments on
three public benchmark video-text datasets have demonstrated
that our method consistently outperforms the state-of-the-art
(SoTA). A simple demo of QAMF will soon be publicly available
on our homepage: https://github.com/Lab-ANT.

Index Terms— Fine-grained fusion, Gaussian decay, query-
adaptive, semantic representation.

I. INTRODUCTION

THIS article tackles the problem of joint video-text and
text-video cross-modal retrieval. Given a query video

(or natural language text queries), the aim of a cross-modal
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Fig. 1. Example of a multilevel semantic representations system. For a query
video in the MSR-VTT dataset, the global-event representation level (top)
and local-entity representation level (bottom) are employed to obtain two
similarity score lists, respectively. There are 20 relevant texts for this query,
where global-event representation produces good performance, but local-entity
representation fails. And we plot the sorted scores for rank lists 1–100, and the
corresponding ten top-ranked texts. Relevant texts are in green and irrelevant
ones red. Note that the sorted score curve is cliff-shaped for global-event
representation, but gradually descending for local-entity representation.

retrieval system is to search for all the semantically relevant
and similar natural language texts (or videos) in a database.
Hence, it is of significant theoretical and practical impli-
cations value to investigate effective cross-modal retrieval
methods and apply them in real-world scenarios to promote
the development of diversified retrieval techniques. Lately,
to improve the performance of video-text cross-modal retrieval
by exploiting both global and local semantic representations
in text and video, various fine-grained cross-modal retrieval
approaches have investigated the following strategies [1], [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], including adopt-
ing the attention mechanism to gather valuable cross-modal
and temporal cues [13], using temporal fusion mechanism
to represent videos and texts, respectively, and aligns local
components to compute overall similarities [2], [3], [4], pars-
ing the video-text pairs into different semantic representation
levels [1], [5], [7], [9], [10]. It is proven that fine-grained
semantic detail representation and multilevel representation
fusion have been extremely salutary for boosting cross-modal
retrieval performances.

It is well acknowledged that the search accuracy would
be very high if using a given query with good semantic
representations. On the contrary, leveraging inferior ones will
produce lower search quality. Ideally, if a to-be-fused semantic
representation is effective that also complements existing ones,
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Fig. 2. Different cross-modal matching approaches. (a) Basic single vector-
based similarity. (b) Multilevel representation matching.

a higher search performance may be achieved. However, in a
realistic situation, an essential issue comes where we do
not know in advance of fusion whether a complementary
semantic representation is effective or not for a given query
video (or text). Without identifying the risk of using or
the quality of representation information may degrade the
retrieval performance. Therefore, it is necessary to predict the
semantic representation effectiveness with relatively satisfac-
tory performance, and, in fact, more essential, to design a
mechanism that is capable of promoting good representations
and punishing inferior ones. It is a matter of concern that some
state-of-the-art (SoTA) hierarchical fine-grained representation
fusion methods [9], [10], [11] take the average of cross-modal
similarity scores at all levels as final video-text matching
similarity resulting in a retrieval performance worse than
expected.

In light of the above analysis, this article proposes an
effective query-adaptive multilevel fusion (QAMF) model
for hierarchical fine-grained video-text retrieval which takes
the advantage of global-to-local semantic representation and
makes up their deficiencies. Similar to [1], [5], [9], [10],
and [14], we decompose video-text matching into global-
to-local three levels of representation matching, including
global-event representation matching, action–relation repre-
sentation matching, and local-entity representation matching,
as shown in Fig. 2. Moreover, to capture the interaction
between different levels of semantic representation, we pro-
pose a text transformer-graph inference module and align the
cross-modal components of each representation level by the
attention mechanism. For adaptive late fusion, our motivation
is simple and effective: the similarity score curve for a good
level of semantic representation is very steep, in a “cliff”
shape, while that of an inferior one is gradually dropping,
in a “hill slope” shape. Then, by fitting the sorted similarity
score curve’s tail with the Gaussian decay function, the area
under the normalized similarity score curve can be regarded
as the surrogate estimation of the semantic representation
effectiveness. In the end, the late fusion weight of seman-
tic representation at each level is assigned adaptively by
the area under the normalization curve. To the best of our
current knowledge, compared with the previous hierarchical

fine-grained fusion methods, our QAMF can achieve SoTA
performance on three public benchmark video-text datasets,
including MSR-VTT [15], TGIF [16], and VATEX [17]. The
main contributions of this article are as follows.

1) To tackle the hierarchical matching framework that fails
to realize adaptive fusion, we propose a query-adaptive
fusion mechanism (called query-adaptive fusion) to
enable differential fusion of multilevel semantic rep-
resentation based on representation merit estimation,
rescoring, and attention assignment.

2) To capture the semantic interactions between the
text graph nodes under different representation levels,
we propose a transformer-based graph inference mech-
anism (called text graph-transformer) and embed it in
the text encoding procedure.

3) Extensive experimental results on three public bench-
mark video-text datasets have demonstrated that our
QAMF consistently outperforms the SoTA ones with a
preferable margin.

The remainder of this article is organized as follows.
First, we briefly review the related works in Section II and
Section III introduces the design of our QAMF for fine-grained
video-text retrieval. Then, we present the experimental settings
and results in Sections IV and V. Finally, conclusions are given
in Section VI.

II. RELATED WORKS

The work related to this article includes visual-text match-
ing, fine-grained cross-modal matching, and multimodal
fusion, which are discussed in Sections II-A–II-C.

A. Visual-Text Matching

Given a set of query images/videos (or natural language
texts), our goal is to search the most relevant natural language
texts (or images/videos) [18], [19].

Image-text matching retrieval has long been tackled via
encoding images and sentences into fix-dimensional vectors
and mapping them to a common latent space for similarity
matching [6], [7], [20], [21], [22], [23]. Lee et al. [6] propose
the stacked cross-attention mechanism to align each region
of the image with the word, which greatly improved the
alignment performance. Gu et al. [23] merge image and
caption generation in a multitask framework to enrich the
global representation. However, this method can hardly cover
complex semantic representation information by a single fixed-
dimensional vector. Wu et al. [7] parse text into objects,
attributes, relationships, and sentences for multilevel align-
ment matching. Although image-text matching and video-text
matching are both visual-text matching, the spatial–temporal
evolution properties of video-text matching make it more
complicated [2], [24]. To improve the alignment of the video–
text, Yu et al. [2] estimate video-text similarity by the dense
pairs between each word of the text and each frame of the
video. Zhang et al. [24] implement video-to-text retrieval by
parsing a hierarchical decomposition of the video-text.

The above methods have achieved gratifying performance
for visual-text matching; nonetheless, these methods ignore the
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Fig. 3. Late fusion structure comparison. Different from the existing structure
of late fusion (such as (a) HGR [10]), our proposed (b) QAMF realizes
adaptive fusion by (12)–(17).

fine-grained representation information such as barely describ-
ing the image from global-to-local semantic representations
and hardly capturing semantic interaction in a visual–text pair.

B. Fine-Grained Cross-Modal Matching

In order to capture the visual–textual semantic detail repre-
sentations, the problem of fine-grained cross-modal matching
has been extensively investigated, leading to various meth-
ods [1], [2], [4], [5], [6], [9], [10], [13], [20], [25], [26].
Among them, these approaches have achieved better perfor-
mance in fine-grained image-text retrieval [6], but learning
semantic alignments between video-text pairs is more chal-
lenging. Furthermore, the image-text sequence representations
ignore the topological structures, which makes them hard
to capture the relationship between the local components
within a global event. To enrich the representation of videos,
Mithun et al. [13] and Liu et al. [26] adopt multimodal rep-
resentation information from videos such as speech contents,
action cues, and scene description sentences for video encod-
ing. Yu et al. [2] and Song and Soleymani [4] adopt a sequence
of video frames and text words to represent the fine-grained
semantic representation information of the video-text pair
and calculate the overall similarity by aligning the local
components.

In terms of capturing hierarchical fine-grained semantic
representations, our work is most similar to Wray et al. [9]
and Chen et al. [10]. For the former, this method parses
action phrases into different part-of-speech such as verbs and
nouns for fine-grained retrieval. However, the sentences of
text are more complicated than action phrases and global
events will be ignored if only action phrases are consid-
ered. For the latter, it disentangles video-text matching into
three hierarchical semantic representations matching, which
is responsible for capturing global events, local actions, and
entities, respectively. The semantic matching scores of these
three levels are fused together as the final video-text similarity
to enhance fine-grained semantic coverage.

C. Multimodal Fusion

Various works have been investigated toward deep mul-
timodal fusion [11], [27], [28]. The two main streams for

multimodal fusion can be specified as early and late fusion,
depending on steps to fuse, which have been discussed
in image search [29], [30], [31], cross-modal retrieval [2],
[9], [10], [13], [23], [26], multiview clustering [27], [32],
[33], [34], and multimodal machine learning [11], [13], [35],
[36]. In early fusion, descriptors employ a certain operation
(e.g., averaging, concatenation, self-attention, and compres-
sion) at the feature level or pixel level for fusion. Then, the
fused features are processed together through the learning
methods. While late fusion refers to fusion at the score or
decision level. In late fusion, a good tradeoff can be made
between the feature representation content and the efficiency
in fusion.

In cross-modal retrieval, Yu et al. [2] propose the JSFu-
sion model for estimating video-text hierarchical semantic
similarity by dense pairwise comparisons between each word
of the text and each frame of the video. Wray et al. [9]
and Chen et al. [10], respectively, disentangle video-text pairs
into different semantic representations and fuse video-text
matching at different levels. Yet, these two approaches are not
appropriate to assign fixed weight to all levels of semantic rep-
resentations for fusion: for a given query, we should estimate
the effectiveness of a level in a query-adaptive manner, so there
is fall back if an ineffective level is integrated. Therefore,
in our work, we propose a QAMF via similarity, as shown in
Fig. 3. Our QAMF model estimates the effectiveness of each
fused semantic representation in a query-adaptive manner. This
allows the effectiveness of different semantic representation
levels based on the similarity score it shares with each query
(a video or a text), so that those “good” semantic represen-
tation levels are endowed with larger weights for providing
greater contributions, while the “bad” ones are punished, thus
attaining differential fusion of hierarchical semantic detail
representation.

III. DESIGN OF QAMF

To implement our QAMF model, we choose hierarchical
graph reasoning (HGR) [10] as the basic model and inte-
grate the proposed components (i.e., text graph–transformer
and query-adaptive fusion) into it to attain our QAMF, for
multilevel fusion video-text matching. Fig. 4 illustrates the
overview of our QAMF that consists of three modules: 1) text
encoding module; 2) video encoding module; and 3) query-
adaptive fusion module. Video–text pair alignment matching
that from global-to-local levels and adaptive late-fusion to
calculate the overall cross-modal similarity.

A. Video-Text Hierarchical Encoding

Each overall sentence about the video is a summary
description of the global event, which usually includes
action–relation and local-entity (e.g., agent and patient of the
interactive relationship). The adoption of global-to-local levels
for video descriptions can comprehensively understand the
interaction between various entities, thereby enabling better
semantic coverage of text representations.

1) Text Encoding: Transforming text descriptions into
semantic graphs has been extensively investigated; in our
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Fig. 4. Overview of our effective QAMF model based on manipulating multiple similarity scores between the hierarchical visual and text representations for
video–text retrieval. First, we decompose the video-side and text-side into hierarchical semantic representations composed of global-event level, action–relation
level, and local-entity level, respectively. Second, the multilevel is aligned to calculate the similarity score for each level. Finally, the query-adaptive fusion
module is leveraged to effectively fuse the similarity of all levels.

study, we follow the works [10] and [14] that disentan-
gle the video description into three levels of the semantic
representation, which are global-event representation level,
action–relation representation level, and local-entity represen-
tation level. To be specific, given a video description T with
N words {T1, . . . , Tn}, where n ∈ [1, N]. For the global-
event representation, we mainly capture the event described
in the sentence as a whole. Hence, we first utilize word2vec
to convert T that consists of into word vector embeddings
{t1, . . . , tn}, where n ∈ [1, N]

tn = word2vec(Tn), n ∈ [1, N]. (1)

Then, we aggregate the word embedding vectors by an
attention mechanism to focus on important events in the
sentence. Thus, the global-event sentence representation cg is
given by

cg =
N∑

i=1

αg,i ti (2)

αg,i = exp
(
ugti

)
∑N

j=1 exp
(
ugt j

) (3)

where ug is the parameter to be learned by the model that
focuses on important hidden layer representations. Mean-
while, to obtain more fine-grained semantic information,
we adopt an off-the-shelf semantic role parsing toolkit [37]
to get verbs, noun phrases, and their semantic role rela-
tions in the sentence T . As a global event is composed
of different action–relations, the second level of the text
graph is the action–relation representation level, whose nodes
are verb phrases. Then the remaining third level is natu-
rally the local-entity level, whose nodes are noun phrases.
For action–relation and local-entity nodes, we employ max
pooling over words in each node as action–relation node

representations ca = {ca,1, . . . , ca,Na } and local-entity node
representations cl = {cl,1, . . . , cl,Nl }, where Na and Nl are
numbers of action–relation and local-entity nodes, respectively
(following the HGR [10] and hierarchical cross-modal graph
consistency (HCGC) [14]).

In terms of edge connections, the verb phrases are con-
sidered action–relation nodes and connected to the sentence
node with direct edges. Since the sentence nodes contain
global-event semantic representation information, the con-
textual relationships between action–relation nodes can be
implicitly learned from the sentence nodes in the graph
reasoning. While the noun phrases are local-entity nodes
that are connected with different action–relation nodes. As a
result, the edge type between the local-entity nodes and the
action–relation nodes is determined by the semantic role of the
local-entity in reference to the action–relation. In particular,
similar to [10], if a local-entity node provides multiple seman-
tic roles to different action–relation nodes, we will duplicate
the local-entity nodes for each semantic role. In Fig. 4, we give
an example of the constructed hierarchical text graph.

After constructing the text graph, the graph–transformer
is leveraged to learn the semantic interactions between the
nodes of different levels. As a result, given the initialized
node representation ci ∈ {cg, ca, cl}, the graph–transformer is
utilized to select relevant context information from neighbor
nodes to enhance the representation for each node

β̃i j = (
uq

acl
i

)T (
u p

a cl
j

)
/
√

D (4)

βi j = exp
(
β̃i j

)∑
j∈Ni

exp
(
β̃i j

) (5)

where Ni represents of neighborhood nodes of node i ,
uq

a and u p
a are parameters to compute the attention of graph–

transformer, cl
i is the output representation of node i at the

Authorized licensed use limited to: National Univ of Defense Tech. Downloaded on May 07,2025 at 07:07:52 UTC from IEEE Xplore.  Restrictions apply. 



7154 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 5, MAY 2024

lth graph reasoning layer, and D is the dimension of the node
representation. Then, the shared ut is adopted to transform
contexts from attended neighbor nodes to node i with a
residual connection

cl+1
i = cl

i + ul+1
t

∑
j∈Ni

(
βi j c

l
j

)
. (6)

As a result, after the transformer-based graph reasoning
process, we can obtain the final node representations of the
hierarchical text graph, namely cg indicates the global-event
node representation, ca for action–relation node representation,
and cl for local-entity node representation.

2) Video Encoding: Different from the text, for video
encoding, we adopt the pretrained ResNet model for hier-
archical representation. Similar to [1] and [10], we obtain
different levels of semantic representation by constructing
three independent video embeddings. Specifically, given video
V containing a frame sequence { f1, . . . , fm} as input, where
m ∈ [1, M]. We adopt three different linear transformation
weights uv

g, uv
a and uv

l to encode the video frame sequence
into three levels of visual vector embedding

yk,i = ug
k fm, k ∈ {g, a, l}. (7)

Moreover, we reuse the above attention mechanism similar
to (2) and (3) to obtain a global representation vector to
denote the overall event description in the video as yg.
While the action–relation representation and local-entity rep-
resentation, the video fine-grained semantic representations
are a frame-wise features of time segmentation sequence
ya = {ya,1, . . . , ya,m} and yl = {yl,1, . . . , yl,m}, respectively.
Therefore, the final parsing video hierarchical coding rep-
resentation is: yg indicates the global-event representation,
ya for action–relation representation, and yl for local-entity
representation. These semantic detail features will be sent
to the query-adaptive fusion module to match with their
corresponding textual feature representations at different levels
to align videos and texts.

B. Query-Adaptive Fusion

To improve the performance of video-text pair matching,
we adaptively fuse results from the three levels of semantic
representation for the overall cross-modal similarity.

1) Differential Merits of the Representations: In informa-
tion retrieval, for a specific query, a good semantic represen-
tation means that its search accuracy is high. In contrast, the
semantic representation with low search quality is called the
inferior one. When the adopted semantic representation infor-
mation is good and complementary to existing ones, a higher
performance is expected. Yet, due to the low discriminability
of semantic representation, many irrelevant results have high
similarity scores. Specifically, the formal description of the
extreme case in the video–text cross-modal retrieval is as
follows: the best and worst semantic representations for a
given query video vq (or text tq). In a video–text dataset
containing V videos with T text descriptions for each video,
for simplicity, we assume that: 1) there is only one relevant
text description t∗ to query video (there is only one relevant

video v∗ to query text) that 2) the text description (or video)
similarity scores are normalized with a maximum value of 1.
Intuitively, the best level of semantic representation satisfies
the following requirements:

s(best)
t,vq

=
{

1, if t = t∗

0, otherwise
, t = 1, 2, . . . , T (8)

s(best)
v,tq =

{
1, if v = v∗

0, otherwise
, v = 1, 2, . . . , V (9)

where s(best)
t,vq

is the similarity score of text description t to
query vq (s(best)

v,tq is the similarity score of text description v
to query tq ) with respect to the best semantic representation.
Only the similarity score of the relevant text t or video v is 1,
and all other irrelevant texts (or videos) are 0. In contrast, the
worst semantic representation has completely different results,
that is,

s(worst)
t,vq

=
{

0, if t = t∗

1, otherwise
, t = 1, 2, . . . , T (10)

s(worst)
v,tq =

{
0, if v = v∗

1, otherwise
, v = 1, 2, . . . , V . (11)

Therefore, (8)–(11) are defined by the discrimination ability
of semantic representation to obtain the similarity score curve,
once sorted, exhibit a “cliff” shape and a “hill slope” shape,
respectively. Then, we find that the effectiveness of semantic
representation is estimated as negatively related to the area
under the normalized similarity score curve.

2) Rescoring Ranking List With Decay Function: As men-
tioned above, we estimate the effectiveness of semantic rep-
resentation by the area of the sorted similarity score curve.
However, the global-event curve drops sharply into a “cliff”
shape, and it is quite easy to tell that global-event is a good
representation level. But the effectiveness of action–relation
and local-entity is not so obvious: both sorted similarity score
curves have a relatively “high tail,” and scores of the top-
ranked videos/texts are not remarkably higher than the tail,
for example, many irrelevant results have high ranks due to
the low discriminability of inferior semantic representation.

To alleviate the impact of the “high tail,” Zheng et al. [31]
proposed to find a reference score curve in the irrelevant
data for each query to approximate the tail of the initial
ranking similarity score curve, and if subtracted, would high-
light the protrusion of the top-ranked scores. However, the
method to construct the reference curve is complicated and
can hardly be generated online. Inspired by Zheng et al. [31],
Bodla et al. [38], and Ma et al. [39], this article proposes to
construct a decay function for rescoring the ranking list for
each query. This function can be regarded as a penalty to
the tail of the initial similarity score curve since the ranking
score tails of both good and inferior semantic representations
are almost always false positives. The “high tail” of inferior
semantic representation means a higher likelihood of being
false positives, and if penalized, it will highlight the top-ranked
scores. We propose to fit and normalize the initial ranking
similarity score list with Gaussian penalty function s(i)

j , and
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the equation is as follows:

g(i)
j = s(i)

j e−
(

s
(i)
j −s

(i)
1

)2

σ (12)

where s(i)
j is an initial ranking similarity score list obtained by

semantic representation F (i), j = 1, 2, . . . , andT/V (T indi-
cates video-to-text retrieval, V denotes text-to-video retrieval).
Moreover, s(i)

1 denotes the rank-1 result, assuming that the
good or inferior similarity score curves are those in which
rank-1 is a true match. Specifically, the “high tail” of inferior
semantic representation is fit by the Gaussian function, which
is penalized significantly. Next, the Gaussian function fitting
curve g(i)

j is subtracted from the initial ranking similarity score
curve of the query

ŝ(i)
j = s(i)

j − g(i)
j . (13)

Then, the fitting curve of the Gaussian function for the “high
tail” penalty closely approximates the profile of the initial
ranking similarity score curve, thus scores of the top-ranked
texts or videos can be highlighted in the resulting curve ŝ(i)

j .
3) Adaptive Weights Estimation: Similarities of different

representation levels usually have different influences on the
overall similarity, so we should adaptively assign the similar-
ities with different attention. To improve the efficiency of the
model and eliminate the influence of outliers, ŝ(i)

j necessary to
undergo min–max normalization

s(i)
j = ŝ(i)

j − min ŝ(i)
j

max ŝ(i)
j − min ŝ(i)

j

. (14)

After min–max normalization, s( j)
q is the normalized simi-

larity score curve that can be used to estimate the effectiveness
of semantic representation. For a given query video (or text)
with K levels of semantic representation, we have K similarity
score ranking lists {s(i)

j }K
i=1. After normalization to {s(i)

j }K
i=1,

the query-adaptive weight of semantic representation F (i) to
query video (or text) can be calculated as

w(i)
q =

1
Ai∑K

k=1
1
Ak

(15)

where Ai (i = 1, . . . , K ) denotes the i th level semantic
representation under the score curve of area.

4) Hierarchical Similarity Fusion: Suppose that K levels of
semantic representation are fused, given the query vq (or tq )
and a dataset d contains V videos with T text descriptions
for each video, the similarity score of d to vq (or tq )
with respect to semantic representation F (i), i = 1, . . . , K
is represented as s(i)

d,vq
(or s(i)

d,tq
). Let w(i)

q , i = 1, . . . , K
encode the weight of semantic representation F (i) for query vq

(or tq), and has a sum of 1. Then, we take the adaptive fusion
of cross-modal similarity at all levels as the final matching
similarity

sim(V , T ) =
K∏

i=1

(
s(i)

d,vq

)
w(i)

q , where
K∑

i=1

w(i)
q = 1 (16)

or

sim(V , T ) =
K∏

i=1

(s(i)
d,tq

)w(i)
q , where

K∑
i=1

w(i)
q = 1. (17)

Note that the weight w(i)
q of query-adaptive fusion is deter-

mined by (15).

IV. EXPERIMENTAL SETTINGS AND BASELINES

In this section, we briefly introduce the three public bench-
mark video–text datasets adopted in our work, experimental
evaluation metrics, implementation details, and baselines.

A. Datasets

The MSR-VTT [15] dataset contains 10 000 videos with
20 text descriptions for each video. We follow the standard
split with 6573 videos for training, 497 for validation, and
2990 for testing.

The TGIF [16] dataset is composed of GIF format videos,
where there are 79 451 videos for training, 10 651 for valida-
tion, and 11 310 for testing in the official split. Each video
corresponds to one to three descriptive sentences.

The VATEX [17] dataset includes 25 991 videos for train-
ing, 3000 for validation, and 6000 for testing. There are ten
sentences in English and Chinese languages to describe each
video. In our work, we only utilize English annotations.

B. Evaluation Metrics

We adopt three common metrics to measure our QAMF
model: recall at K (R@K ), median rank (MedR), and mean
rank (MnR). R@K is the fraction of queries that correctly
retrieve desired items in the top K of the ranking list. And,
we set K = 1, 5, 10, following the tradition [9], [10], [14].
MedR and MnR measure the median and average rank of cor-
rect items in the retrieved ranking list, respectively. Addition-
ally, we also use the sum of all R@K as rsum to measure the
overall retrieval performance. For R@K and rsum, a higher
score indicates better performance, and for MedR and MnR,
a lower score indicates better performance. It is the rsum of
all the evaluation indicators in the model for R@1, R@5, and
R@10

sum = R@1 + R@5 + R@10︸ ︷︷ ︸
Text→Video or Video→Text

(18)

rsum = R@1 + R@5 + R@10︸ ︷︷ ︸
Text→Video

+ R@1 + R@5 + R@10︸ ︷︷ ︸
Video→Text

.

(19)

C. Implementation Details

The experiments are conducted with Ubuntu18.04, Intel1

Core2 i7-9700KF CPU@3.60 GHz, 64.00 GB RAM, and
Nvidia GeForce RTX-2080Ti GPU. Similar to [10]: for the
video encoding, we utilize the pretrained ResNet [42] to
extract the visual semantic features of MSR-VTT and TGIF,

1Registered trademark.
2Trademarked.
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TABLE I

VIDEO–TEXT RETRIEVAL COMPARISON WITH STATE-OF-THE-ART METHODS ON MSR-VTT DATASETS

and adopt the Inflated 3D ConvNets (I3D) [43] video features
provided by the VATEX dataset. For the text encoding, we set
the word embedding size as 300 and initialize with pretrained
Glove embeddings [44], and the dimension of embedding
space for each level is 1024. In particular, if not specified,
the σ parameter in the Gaussian decay function is set to 0.5.

D. Baselines

We conduct a comparison with some SoTA approaches.
1) VSE [36]: It is a SoTA cross-modal retrieval model and

is also regarded as a strong baseline in the text–video
or text–image retrieval tasks.

2) VSE++ [22]: An improved version of visual-semantic
embeddings (VSE), which utilizes a novel loss based on
augmented data and fine-tuning to significantly improve
cross-modal retrieval performance.

3) Mithum et al. [13]: Adopt multimodal cues from videos
and a modified pairwise ranking loss to enhance the
discrimination between feature representations.

4) W2VV [20]: W2VV can transform natural language
statements into meaningful visual feature representa-
tions, that is, the relevant video–text pairs in feature rep-
resentation space will be pulled closer, while irrelevant
ones will be pushed apart.

5) DualEn [5]: Mean pooling, biGRU, and convolu-
tional neural network (CNN) are leveraged to real-
ize the visual–text pairs coarse-to-fine-grained and
spatial–temporal feature representations.

6) HGR [10]: The graph convolutional network is used to
model the hierarchical representations of video and text,
respectively, and the alignment of video–text pairs is
implemented at three levels of visual–text embedding
common space.

7) HCGC [14]: Multilevel graph consistency learning is
leveraged to bridge the semantic gap between video-text
cross-modal retrieval.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we present experimental results with the
corresponding analysis on three public benchmark datasets for
video-text bi-directional cross-modal retrieval. For clarifying
the evaluation logic, we elaborate six research questions (RQs)
as our evaluation goals in experiments as follows.

TABLE II

TEXT-TO-VIDEO RETRIEVAL COMPARISON WITH STATE-OF-THE-ART

METHODS ON THE TGIF AND VATEX DATASETS

1) RQ1: Is the overall performance of our QAMF model
superior to the SoTA methods?

2) RQ2: Are the hierarchical encoding (see
Section III-A), text graph–transformer component
(see Section III-A1), and query-adaptive fusion
component (see Section III-B) in QAMF essential and
effective?

3) RQ3: The decay function plays a significant role in
query-adaptive fusion of our QAMF. How to choose the
fitting decay function? Why the Gaussian function is
adopted?

4) RQ4: What are the impact of parameter l and σ in the
query-adaptive fusion of our QAMF?

5) RQ5: What is the generalization capability of the pro-
posed query-adaptive weights estimation and similarity
fusion mechanism?

6) RQ6: What is the qualitative performance of the
proposed bi-directional retrieval model?

For convenience, in the tables of experimental results,
we employ abbreviations “[l-e],” “[a-r],” and “[g-e]” to repre-
sent local-entity representation level, action–relation represen-
tation level, and global-event representation level, respectively.

A. Comparison With State-of-the-Art (RQ1)

As shown in Tables I and II, we present performance
comparisons with a group of the SoTA on three public
benchmark datasets. On MSR-VTT, HGR [10] is superior to
DualEn [5] and other methods for each metric, and the overall
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TABLE III

RESULTS ON THE ABLATION STUDY OF THE REPRESENTATION LEVELS IN HIERARCHICAL ENCODING
OF QAMF. THE HIGHEST SCORE IS SHOWN IN BOLD

retrieval quality reflected by the rsum metric is also boosted
by a large margin (+23.8). In particular, our QAMF model
performance is further enhanced to 183.64 in rsum, which
is a significant improvement compared to DualEn and HGR.
We believe the major gain comes from text graph–transformer
and query-adaptive fusion, which enhances the complemen-
tarity of semantic representations at global-to-local levels.
Although HGR implements hierarchical fine-grained video-
text matching, it ignores semantic interactions between the
text graph nodes of different levels and also fails to realize the
adaptive differential fusion of multilevel semantic representa-
tion, thus not as outstanding as our QAMF in the video–text
pairs for cross-modal retrieval.

To further demonstrate the strength of the QAMF on dif-
ferent datasets, we provide quantitative results on TGIF and
VATEX in Table II. Similar to the HGR, the model utilizes
ResNet image features on the TGIF and I3D video features on
the VATEX. We can see that the performance of our is superior
to SoTA methods. On TGIF, our QAMF yields the R@K
(K = 1, 5, 10) of 6.72, 14.85, and 20.74 respectively, when
equipping the baseline HGR with text graph–transformer and
query-adaptive fusion. On VATEX, the QAMF keeps the per-
formance of 38.37, 78.14, and 88.92 in R@K (K = 1, 5, 10),
compared to 35.1, 73.5, and 83.5 of the HGR baseline. The
results illustrate that it is beneficial to improve the cross-modal
retrieval accuracy by combining the global-to-local in an
adaptive manner and the rich semantic interactions between
the text graph nodes of different levels.

B. Ablation Study (RQ2)

Compared with the HGR baseline, our QAMF involves
hierarchical encoding for deliberate representation, text graph–
transformer, and query-adaptive fusion components. In this
part, we conduct ablation studies on these factors.

1) Different Combinations of Representation in Hierar-
chical Encoding: The ablation study results are shown in
Table III. From the evaluation results, we draw the following
conclusions.

1) It is worth noting that for the top three rows of each
dataset, video–text matching results via three levels
(including [l-e], [a-r], and [g-e]) on three public bench-
mark datasets. It shows that the [g-e] representation
achieves the best performance, obtaining 143.4, 56.71,
and 357.76 in rsum on MSR-VTT, TGIF, and VATEX,
respectively. By contrast, the [l-e] representation leads to
inferior performance, which yields 120.09 and 306.61 in
rsum on MSR-VTT and VATEX, respectively. Moreover,
[a-r] representation results in moderate accuracy on the
three datasets.

2) Under our QAMF (equipping the baseline with text
graph–transformer and query-adaptive fusion) to eval-
uate the performance of different combinations of
representation (including [l-e] + [a-r], [l-e] + [g-e],
[a-r] + [g-e], and [l-e] + [a-r] + [g-e]). We conduct
a series of multilevel fusion ablation studies on MSR-
VTT, TGIF, and VATEX, the bottom four rows of
each dataset in Table III show the detailed results.
On MSR-VTT, by combining [a-r] and [l-e], the [g-e]
performance is boosted to 73.34 and 76.44 in sum,
respectively. Note that for [a-r] and [l-e] which have
moderate performance, their combination achieves a
sum of 71.62. When the three representation levels
([g-e] + [a-r] + [l-e]) are merged, the fusion still yields
stable improvement. Similar results can be observed on
TGIF and VATEX. It is evident that our QAMF brings
consistent benefits to combinations of various semantic
representation levels.

2) On the Involvement of Text Graph–Transformer and
Query-Adaptive Fusion: The ablation study results of com-
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TABLE IV

UNDER MULTILEVEL COMBINATION ([L-E] + [A-R] + [G-E]), RESULTS ON THE ABLATION STUDY OF THE TEXT GRAPH–TRANSFORMER COMPONENT
AND THE QUERY-ADAPTIVE FUSION COMPONENT IN QAMF. THE HIGHEST SCORE IS SHOWN IN BOLD

TABLE V

UNDER OUR QAMF TO EVALUATE THE PERFORMANCE OF MULTILEVEL
FUSION (INCLUDING [L-E] + [A-R], [L-E] + [G-E], [A-R] + [G-E],

AND [L-E] + [A-R] + [G-E]) VIA EMPLOYING DIFFERENT FITTING

DECAY FUNCTIONS ON THE MSR-VTT DATASET. THE
HIGHEST SCORE IS SHOWN IN BOLD

ponents are shown in Table IV, under multilevel combination
([l-e] + [a-r] + [g-e]) to evaluate the contributions of each
component. We evaluate the performance of the proposed
components (i.e., text graph–transformer and query-adaptive
fusion) for video–text retrieval. To extensively investigate the
contributions of each component, we compare our QAMF
with its four counterparts on three datasets, which are
the HGR baseline and three variations of our QAMF:
QAMF with text graph–transformer only (namely, HGR+Text
Graph-Transformer), QAMF with query-adaptive fusion only
(namely, HGR+Query-Adaptive Fusion), and full QAMF
(namely, equipping the HGR with Text Graph-Transformer
and Query-Adaptive Fusion). From the results, one can see
that the performance of the HGR baseline without text
graph–transformer or query-adaptive fusion is worse than two
variations of QAMF on three datasets, which indicates that
both components contribute to the structure of global-to-local
hierarchical fusion video-text matching.

C. Decay Function (RQ3)

The decay function plays a significant role in the
query-adaptive fusion of our QAMF. In this section, we discuss

Fig. 5. Impact of Gaussian decay function. We calculate the proportion
of good and inferior similarity score curves against the area under the score
curve. Without the Gaussian decay function, for (a) global-event representation
and (c) action–relation representation, good and inferior similarity score
curves cannot be distinguished. Yet, when Gaussian fitting is subtracted, for
(b) global-event representation and (d) action–relation representation, good
and inferior similarity score curves are clearly separated.

Fig. 6. Sensitivity of text-to-video retrieval and video-to-text retrieval to
parameter l on MSR-VTT. We test l = 100, 500, 1000, 1500, 2000, 3000,
4000, and 5000 in distinct multilevel combinations (including [l-e] + [a-r],
[l-e] + [g-e], [a-r] + [g-e], and [l-e] + [a-r] + [g-e]). (a) R@1 text-to-video
versus ranklist. (b) R@1 text-to-video versus ranklist.

the decay function selection and the benefits of using decay
functions, respectively.

1) Function Selection: In Table V, under our QAMF to
evaluate the performance of different levels of combination
(including [l-e] + [a-r], [l-e] + [g-e], [a-r] + [g-e], and
[l-e] + [a-r] + [g-e]) via employing different fitting decay
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Fig. 7. Text-to-video retrieval examples on the MSR-VTT dataset. We visualize Top-5 retrieved videos. Truly matched videos are marked with a green
marker, and falsely matched ones are red.

functions on MSR-VTT. Apart from the proposed Gaussian
function, other functions with more parameters can also be
adopted as penalty fitting functions, which fully consider
removing the “high tail” problem. For example, the Boltzmann
function and the Gompertz function can be used, but such
functions would increase the number of parameters. As a
result, we adopt the Gaussian function with fewer empirical
parameter requirements, which can achieve similar results with
the Boltzmann function and Gompertz function.

2) Impact of Using Decay Function: In order to illustrate
the working mechanism of the Gaussian decay function in the
query-adaptive fusion of QAMF, for global-event ([g-e]) rep-
resentation and action–relation ([a-r]) representation, we have
selected some good and inferior similarity score curves from
MSR-VTT. Good similarity score curves are those in which
rank-1 text (or video) is a true match, and inferior similarity
score curves are those in which top rank is a false match.
We calculate the proportion of good and inferior similarity
score curves against the area under the score curve in Fig. 5.
We find that after Gaussian decay fitting normalization, good
queries tend to have a small area under the score curve, and
vice versa. In this way, we can roughly judge the effectiveness
of a level of semantic representation after Gaussian decay
fitting subtraction.

D. Impact of Parameters (RQ4)

In this section, we discuss the influence of parameters l
and σ used in the decay function. Wherein, l represents the
length of the initial similarity score list (i.e., the fitting length
of the Gaussian decay function), and σ implies the rate of
decay. We test different l and σ on MSR-VTT, and the detailed
experimental results are demonstrated in Fig. 6 and Table VI.

When evaluating parameter l, presented in Fig. 6, one can
see the accuracy increases steadily with l. As a matter of
fact, when we select the longer list of initial similarity scores
(large l), it is more likely to find a better fit to the “high
tail.” Yet, the computational complexity of the area under
the curve also increases with l. Considering this, we choose
l = 2000 in our experiments as a tradeoff between speed and
accuracy. From Table VI, compared with l, the performance

TABLE VI

SENSITIVITY OF TEXT-TO-VIDEO AND VIDEO-TO-TEXT TO PARAMETER σ
UNDER OUR QAMF ON MSR-VTT. WE TEST σ IN

MULTILEVEL FUSION ([L-E] + [A-R] + [G-E])

of video–text retrieval is almost less sensitive to σ . Note
that recall and MnR are stable between 0.3 and 0.7 and
we can always find the best performance for R@1, R@5,
and R@10 in the range of 0.3–0.7. In all our experiments
about MSR-VTT, we set σ to 0.5, even though a σ value
of 0.7 seems to give better performance. This is because we
conducted comprehensive sensitivity analysis experiments and
a difference of tiny is not significant.

E. Generalization of the Components (RQ5)

We evaluate the generalization capacity of the pro-
posed components (text graph–transformer and query-adaptive
fusion) by integrating with an SoTA baseline DualEn [5]
under different fusion inputs (i.e., different semantic repre-
sentation combinations), including [l-e] + [a-r], [l-e] + [g-e],
[a-r] + [g-e], and [l-e] + [a-r] + [g-e]. Table VII shows the
performance of retrieval on MSR-VTT. Equipping the text
graph–transformer and the query-adaptive fusion into DualEn
can also bring improvements. The results suggest that the
proposed two components (i.e., text graph–transformer and the
query-adaptive fusion) can better learn the alignment of local
components and global event structures, which improves the
generalization ability.
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TABLE VII

COMPARISON OF GENERALIZATION UNDER DIFFERENT COMBINATIONS.
DUALEN‡ INDICATES THAT DUALEN [5] IS EQUIPPED WITH TEXT

GRAPH–TRANSFORMER AND QUERY-ADAPTIVE

FUSION COMPONENTS

Fig. 8. Video-to-text retrieval examples on the MSR-VTT dataset and we
visualize Top-5 retrieved texts. Truly matched texts are marked with a green
marker, and falsely matched ones red.

F. Qualitative Results (RQ6)

We show a few qualitative results in Figs. 7 and 8 for text-
to-video and video-to-text by visualizing the retrieval results
with examples from MSR-VTT. For each query, its top-5
ranked texts (or videos) resulted from our QAMF. As we
can see from Fig. 7, QAMF successfully retrieves the correct
video that contains all actions and entities described in the
sentence in the middle and right examples. Although the left
example shows a fail case, where the top-1 retrieved videos are
largely relevant to the text query though are not ground-truth,
QAMF can still search for the correct video in top-2. In Fig. 8,
we provide qualitative results on video-to-text retrieval as
well, which demonstrate the effectiveness of QAMF for
bi-directional cross-modal retrieval.

VI. CONCLUSION

The most existing multilevel fine-grained semantic rep-
resentation fusion video–text retrieval takes the average of
cross-modal similarities at all levels as a final video–text
similarity. However, simple averaging cannot distinguish

the contribution of each level to the final performance,
which makes the result less than expected. Hence, this arti-
cle designed a QAMF model for hierarchical fine-grained
video–text retrieval. First, our QAMF estimates the effec-
tiveness of each to-be-fused semantic representation in a
query-adaptive manner. This makes ineffective semantic rep-
resentation unlikely to have a negative impact on overall
accuracy. Meanwhile, we leverage a text graph–transformer
inference model to capture the semantic interactions between
the text graph nodes of different levels. Second, our QAMF
provides no extra knowledge about querying video–text pairs
and evaluates the effectiveness of semantic representation
only by scoring the similarity of cross-modal components at
each semantic representation. Experiments on three benchmark
video–text datasets demonstrate the strength of the QAMF
model, and we report competitive results compared with the
SoTA methods.

In terms of fusion technique, our QAMF verifies the
feasibility of query-adaptive late fusion in the cross-modal
video–text retrieval. In the future, we will further explore
the probability distribution properties of similarity scores
and the semantic representation selection strategies in fusion.
In addition, our research is a two-stream model technology,
namely, applying separate video and text encoders and match-
ing video–text pairs on the final embedding space. Although
this proposal achieves promising performance, however, they
only achieve suboptimal results due to the lack of closer
video–text interactions. Therefore, in future work, we will also
explore how to employ advanced two-stream vision–language
pretraining (e.g., CLIP [45] and ALIGN [46]) in video–text
retrieval tasks.
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