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STEdge: Self-Training Edge Detection With
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Abstract— Learning-based edge detection has hereunto been
strongly supervised with pixel-wise annotations which are tedious
to obtain manually. We study the problem of self-training
edge detection, leveraging the untapped wealth of large-scale
unlabeled image datasets. We design a self-supervised framework
with multilayer regularization and self-teaching. In particular,
we impose a consistency regularization which enforces the outputs
from each of the multiple layers to be consistent for the input
image and its perturbed counterpart. We adopt L0-smoothing as
the “perturbation” to encourage edge prediction lying on salient
boundaries following the cluster assumption in self-supervised
learning. Meanwhile, the network is trained with multilayer
supervision by pseudo labels which are initialized with Canny
edges and then iteratively refined by the network as the training
proceeds. The regularization and self-teaching together attain a
good balance of precision and recall, leading to a significant
performance boost over supervised methods, with lightweight
refinement on the target dataset. Through extensive experiments,
our method demonstrates strong cross-dataset generality and
can improve the original performance of edge detectors after
self-training and fine-tuning.

Index Terms— Consistency regularization, edge detection,
pseudo labels, self-training.

I. INTRODUCTION

EDGE detection is a fundamental low-level task in com-
puter vision, which aims to extract object boundaries and

visually salient edges from natural images. Various high-level
tasks have greatly benefited from edge detection, such as
object detection and segmentation [1], [2], [3], [4], [5], [6],
video interpolation [7], image inpainting [8], and denois-
ing [9].

Traditional methods accentuate edges based on local fea-
tures such as gradients [4], [10], [11]. Recently, deep learning
approaches have achieved great success due to their ability
of capturing more global context and hence producing more
meaningful edges. Examples include HED [12], RCF [13],
BDCN [14], DexiNed [15], PiDiNet [16], and EDTER [17].
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A downside of supervised learning-based edge detection is
the requirement of large amount of pixel-level annotations,
which is extremely tedious to obtain manually. Meanwhile,
manual labels are biased from person to person, the Mul-
ticue [18] dataset were labeled by six annotators whose
annotations are often inconsistent and the ground truths
were obtained by taking the average. To this end, we study
the problem self-supervised edge detection, leveraging the
untapped wealth of large-scale unlabeled image dataset.
In fact, we found that self-training is especially suited for
edge detection when reasonably designed and trained. Highly
accurate and generalizable models can be learned with a large
collection of unlabeled data.

We design a network that is self-trained with multilayer reg-
ularization and self-teaching. This multilayer self-training is
inspired by the supervised HED method [12] which shows that
edge detection networks are best learned with deep supervision
on multiple layers. For the purpose of self-training, we impose
consistency regularization [19], [20] which enforces the output
from each of the multiple layers to be consistent for the input
image and its perturbed counterpart. In particular, we adopt
L0-smoothing [21] as the “perturbation” to encourage edge
prediction lies in salient boundaries. This conforms with the
cluster assumption in generic self-supervised learning [22] as
L0-smoothing [21] is inherently a color-based pixel clustering.
This way, our network learns to discriminate salient edges.

Meanwhile, our network is self-trained with multilayer
teaching (supervision) by pseudo labels. The pseudo labels
are initialized with Canny edges and iteratively refined by the
network as training proceeds. In each iteration, the edge map
output by the network is first binarized and pixel-wise multi-
plied with the low-threshold (over-detected) Canny edge map
before being used as pseudo labels for the next round. This
is essentially an entropy minimization which helps improve
pixel classification with low-density separation [23].

The multilayer regularization and self-teaching together
achieve a good balance of precision and recall of edge
detection, making our method realizes good cross-dataset
generalization. After self-trained on COCO validation dataset
without using labels, it attains 1.2% improvement for optimal
dataset scale (ODS) and 1.8% for optimal image scale (OIS)
when tested on the unseen BIPED dataset, compared to
supervised methods trained on BSDS dataset using all labels.
Also, on BIPED dataset, based on our self-training method,
two backbones of DexiNed and PiDiNet finetuned on 50%
of the training set already outperforms all the state-of-the-art
methods finetuned on 100% of the training set. With the same
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training set, our method improves the original backbones in
all cases.

In a nutshell, our contributions are mainly as follows.
1) We propose the first framework which enables

self-training edge detection from single images.
2) We introduce multilayer consistency regularization and

self-teaching in the context of self-trained edge detec-
tion.

3) We conduct extensive evaluations of the self-trained net-
work and demonstrate its strong cross-dataset generality
and the potential to promote edge detectors.

II. RELATED WORK

A. Edge Detection

Existing edge detection methods can be categorized into
three groups: traditional edge detector, learning-based meth-
ods, and deep learning-based ones.

Traditional edge detectors focus on utilizing image gradients
to generate edges such as Sobel [24] and Canny [10]. Although
they suffer from noisy pixels and do not consider semantic
understanding, they are still widely used in applications such
as image segmentation [4], [5] and image inpainting [8].

Learning based methods usually integrate various low-level
features and train detectors to generate object-level contours,
based on priors such as gradient descent [4] and decision
tree [11]. Although these methods achieve better performance
than traditional edge detectors, they have many limitations in
challenging scenarios.

Amounts of deep learning-based methods have been pro-
posed with the success of convolutional neural network
(CNN). In early stage, there are patch-based approaches like
DeepEdge [25] and DeepContour [26] which take pre-divided
patches as input of CNNs to decide edge pixels. HED [12]
is a pioneering work of end-to-end edge detection, with a
network architecture based on VGG16 [27] and parameters
adopted from pretrained models on ImageNet dataset [28].
Based on HED, RCF [13] combines richer features from each
CNN layer and BDCN [14] proposed a bidirectional cascade
structure to train the network with layer-specific supervisions.
Efforts have also been made to design lightweight architectures
for efficient edge detection including [15], [16], [29], where
DexiNed [15] introduces Xception [30] to edge detection
network and PiDiNet integrates the traditional edge detection
operators into CNN models. In this article, unlike previous
works, we neither focus on the network architecture design and
efficiency improvements. We first introduce self-training into
edge detection and explore a framework to utilize unlabeled
dataset.

B. Self-Training

Self-training is a semi-supervised or unsupervised learning
strategy that iteratively train the network with constantly
updated pseudo labels for unlabeled training data. It is widely
studied on image classification [31], [32], [33], and recently
applied to high-level vision tasks such as semi-supervised
segmentation [34], [35], [36], [37], [38]. However, in their
cases, the pretrained models used in self-training are usually

trained supervised on labeled data. Recently, some zero-shot
methods based on transferable and adversarial networks [39],
[40], [41], [42] also show the potential for pretraining models.

The most similar framework ULE [43] for self-training edge
detection is based on optical flow estimation, by iteratively
detecting motion edges as pseudo labels from videos and
re-training the edge detector. However, learning from consec-
utive frames need extra cost of storage and calculation, and
the focus of only motion edges limits the performance. In this
work, we aim to enable self-training edge detection from single
images.

To adapt with self-training on noisy pseudo labels, various
kinds of perturbations and consistency methods are studied.
Image perturbation methods [19], [20] augment the input
images randomly and constraint the predictions of augmented
images to be consistent with the original one. Feature pertur-
bation method [44] uses multiple decoders and enforces the
consistency between decoder outputs. Network perturbation
method [45] applies two networks of the same structure with
different initialization and impose the consistency between the
predictions of perturbed networks. Moreover, Chen et al. [46]
imposes the consistency using predictions of one network
to supervise the other one. In this work, with the inspi-
ration of previous methods, we also impose consistency
regularization in our self-training framework. Specifically,
L0-smoothing [21] is adopted to help the network learn to
discriminate salient edges based on the cluster assumption, and
a post-process is delicately designed for entropy minimization
which helps improve pixel classification with low-density
separation [23].

III. METHOD

In Section III-A, we provide problem formulations and
overview of the pipeline including a self-training scheme
consisting of multilayer teaching and consistencies. In
Section III-B, we introduce multilayer teaching by noisy
pseudo labels, to enable training on unlabeled images.
In Section III-C, we introduce a multilayer consistency con-
straint to regularize the multilayer teaching, where we enforce
the outputs from each of the multiple layers to be consistent for
the input image and its smoothed counterpart. In Section III-D,
we introduce the iterative self-training process including post-
process for entropy minimization. In Section III-E, we adopt
an uncertainty-aware strategy to filter pseudo labels for further
retraining to avoid overfitting noisy edge pixels and thus
improve the performances.

A. Method Overview

We aim to propose a self-supervised training scheme to
utilize unlabeled images for edge detection.

To initialize the network as our phase-one model, we use
pseudo labels generated by Canny [10] as supervision.
We observe that even some edge pixels are missing in pseudo
labels, the phase-one model can still predict themselves cor-
rectly, rather than overfitting to noisy pseudo labels, as most
pixels are labeled correctly. It motivates the idea of using
the phase-one model as initialization, and gradually improves
pseudo labels in the self-training phase. Actually, there are
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Fig. 1. Our self-training framework. The input is an unlabeled image and its smoothed counterpart. Consistency regularization and teaching happen in
multiple layers of their output edge maps. Pseudo labels are iteratively generated and send into the network again for self-training.

several merits of adopting pseudo label learning for edge
detection. First, the pixel-level annotations for edge detection
are expensive and tedious to get by brute force. As a result,
there are few edge detection datasets available. Also, scale
of current datasets with annotations are quite small, leading
overfitting in supervised training. Naturally, it motivates our
work on utilizing large-scale unlabeled image datasets by
self-training scheme. Moreover, despite that pseudo labels
inevitably contain noises, most of them are correct enough.
By introducing multilayer consistency regularization, pseudo
labels can be gradually stable and less noisy to serve as extra
training data to promote the performance.

As shown in Fig. 1, in the self-training phase, the pseudo
labels and network predictions are improved jointly and itera-
tively. The pseudo labels teach the network at multiple layers
with the proposed multilayer consistency as regularization,
to suppress the complicated textures and prevent the network
from generating redundant edges. During the self-training, the
input image X and its perturbed one X ′ are sent into the
same network f (x). Multilayer consistency losses are defined
between predictions of X and X ′. In this article, we apply
Gaussian blur followed by L0-smoothing [21] to X to get X ′.
The process can be logically demonstrated as below

X → f (x) → P̂ → Y

↓ ↗ ↘ ↕

X ′ P̂ ′ (1)

where P̂ is a set of predicted edge maps generated from
multiple layers of the network, P̂ = [ p̂1, p̂2, . . . , p̂n], where
p̂i has the same size as input image, and n is the number of
outputs from each upsampling block. P̂ and P̂ ′ are predicted
edge maps of multiple layers from X and X ′ respectively. Y
denotes the pseudo labels post-processed from P̂ for the next
round training based on entropy minimization.

B. Multilayer Teaching

Deeply supervised schemes are studied and proven to be
effective on edge detection [12]. The receptive field varies
from different network layers. Low-level layers with small

receptive fields are likely to detect fine details, while high-level
layers tend to decide semantic boundaries. Providing teaching
of edge maps at multiple layers is essential and effective (See
Section IV-C for more details). Previously, edge detection
networks perform better with deep supervisions at multiple
layers [12], followed by several recent methods [13], [14],
[15]. Since the distribution of edge/non-edge pixels is heavily
biased in a natural image, we adopt the robust weighted cross
entropy loss denoted as Lwce [13] at multiple layers to drive
the training. Loss at pixel xi of an upsampling block n is
calculated by

ln
wce(xi , W ) =


α · log(1 − P(xi , W )), if yi = 0
0, if 0 < yi < η

β · log P(xi , W ), otherwise
(2)

in which

α = λ ·

∣∣Y +
∣∣

|Y +| + |Y −|

β =

∣∣Y −
∣∣

|Y + | + |Y − |
(3)

where W denotes the collection of all network parameters, Y +

and Y − denote the number of edge pixels and none-edge pixels
in the ground truth, respectively. λ is a hyper-parameter to
balance positive and negative samples. η is a threshold to filter
out the less confident edge pixels in ground truths, to avoid
confusing the network. Thus, loss after an upsampling block
n for input image X of size w × h can be represented as

ln
wce(X, W ) =

w×h∑
i=1

ln
wce(xi , W ). (4)

We define different weight δn for each level, and the final Lwce
is calculated as

Lwce =

N∑
n=1

δn
× ln

wce(X, W ). (5)
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Fig. 2. Cluster assumption in edge detection. (a) Examples from COCO
dataset. (b) For raw images. The average Euclidean distance between each
patch of size 20 × 20 centered at a given spatial location extracted from
the input images, and its 8 neighboring patches. (c) Results from applying
Gaussian blur followed by L0-smoothing to raw images. (d) For smoothed
images. The average Euclidean distance map. Darker regions indicate higher
distances.

C. Multilayer Regularization

Consistency regularization is widely studied to make the
decision boundary lies in low-density areas. We enforce the
consistency at multiple layers between the input image and its
smoothed counterpart. Here we apply Gaussian blur followed
by L0-smoothing [21] to the input image, imposing consis-
tency to help the network converge to predict more visually
salient edges. As illustrated in Fig. 2, edge pixels are easier to
be classified in smoothed images which suppress complicated
texture pixels.

The multilayer consistency works as a regularizer to prevent
the network from generating increasingly redundant and noisy
edges as in pseudo labels. Although image noises and redun-
dant edges are expected to be filtered out after L0-smoothing
as an edge-preserving smoothing approach, it unavoidably
causes over-sharpening in challenging circumstances [21].
Therefore, edge maps predicted from smoothed images still
contain noises and it has been proven in [47] that though
categorical cross entropy loss converges rapidly, it is sensitive
to noises. To avoid overfitting to incorrect labels during self-
training, we apply L2 norm, a symmetrical loss function,
which is more noise-tolerant on classification problems based
on the theory of risk minimization [47], [48], where edge
detection is exactly a binary classification problem at pixel
level. As L2 loss is theoretically and practically effective in
our self-training method for its noise tolerance. The pixel-wise
squared difference is computed between the edge map of each
block predicted from X and the corresponding edge map from
X ′. The multilayer consistency loss for block n is formulated
as

ln
mlc(X, W ) =

w×h∑
i=1

[
P(xi , W ) − P

(
x ′

i , W
)]2 (6)

same with the Lwce, the complete Lmlc with layer weights δ

is calculated as

Lmlc =

N∑
n=1

δn
× ln

mlc(X, W ). (7)

Combining multilayer teaching and regularization, with a
trade-off weight µ, the final loss is calculated as

L = Lwce + µLmlc. (8)

Algorithm 1 Self-Training Edge Detection (STEdge)
Input:

The unlabeled images X ; The number of epochs trained
in each round E ; The termination parameter T %.

Output:
The well-trained edge detector M with parameters θ ;
The images X with reasonable edge pseudo labels Y .

1: Initialize the network weights supervised trained by Eq. 5.
Initial pseudo labels are generated by performing Canny
of high threshold on blurred images:
Y = Canny(Blur(X), thres_high),
θ0 = T rain(M(θ), X, Y,Lwce);

2: Prepare smoothed images for consistency regularization:
X ′

= L0_smoothing(Blur(X));
3: for round k in {1, . . . , K } do
4: Get the edge maps predicted by current weights:

P̂ = [ p̂1, p̂2, . . . , p̂n] = M(θk−1, X);
5: Post-process to get new pseudo labels by performing

element-wise multiplication on over-detected Canny
and our binarized edge map:
Ak = Adaptive_binari zation( p̂n),
Ck = Canny(Blur(X), thres_low),
Yk = Connectivi t y_ f ilter(Ak ⊙ Ck);

6: Train on current pseudo labels for E epochs by Eq. 5
and Eq. 7:
θk = T rain(M(θk−1), X, X ′, Y,Lwce,Lmlc);

7: Decide if the self-training process is stable and needed
to be terminated, the number of edge pixels in the
pseudo labels produced in round k is termed N k

edge:

if N i
edge−N i−1

edge

N i
edge

< T % then
break;

end if.
8: end for.

D. Iterative Self-Training

Our approach includes two phases: the initialization phase
and the self-training phase. Phase-one training aims to get
an initial model to warm up self-training, which is needless
to be very powerful. In phase-one, we apply Canny of high
thresholds to the unlabeled dataset Du to generate pseudo
labels, then train the network using weighted cross entropy
loss.

Phase two is the iterative self-training, optimizing the net-
work and pseudo labels simultaneously as training proceeds.
Based on entropy minimization, the predicted edge maps are
post-processed to be the updated labels for the next round.
In Algorithm 1, p̂n is the network prediction of the last layer,
with values between 0 and 1 at each pixel. In post-processing,
p̂n is multiplied with over-detected Canny edges (with low
thresholds) in a pixel-wise level, and then filtered by connected
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Fig. 3. Evolving process of two examples during the iterative training. For each example, the top left is the input image, the first row illustrates the updating
pseudo labels, and the second row shows the network predictions as iteration proceeds.

areas with low connectivity to clear noise edges. The updating
of pseudo labels is critical from two aspects. On the one hand,
if we treat the predicted edge maps as new pseudo labels, the
loss and gradients will be all zeros. On the other hand, when
the predicted probability map is transferred into binary edge
map, the entropy of each pixel is minimized, enforcing low-
density seperations [23] by predicted edges.

During training, we repeat the following process.
1) Predict then post-process p̂n to generate new pseudo

labels Y ;
2) Training the network for E epochs using updated pseudo

labels.
We refer to an iteration of (1) and (2) as one round. The
network is self-trained iteratively for several rounds until
convergence. There are several factors enabling the pseudo
labels to become gradually stable during self-training. First,
in our post-processing, we apply Canny with preset thresholds
to generate updated pseudo labels, which means the edge
pixels have an upper bound (Canny edges on original input).
Also, though Canny edges contain a lot of noisy pixels other
than salient edges, our multilayer regularization is introduced
to encourage higher importance on salient edges and suppress
noisy ones. With the premise of limited upper bound, as the
consistency loss converges, the pseudo labels become gradu-
ally better and stable during the self-training phase.

The self-training process is terminated when the pseudo
edge maps change slightly. Specifically, we finish the
self-training when the ratio of increased edge pixel number to
the total edge pixel number is smaller than a termination value
T % (We set T = 2 in all experiments). We summarize the
whole self-training process as in Algorithm 1. The qualitative
evolving process is shown in Fig. 3.

E. Uncertainty-Aware Re-Training

To make full use of the pseudo labels from each self-
training round, and avoid overfitting noisy ones, we adopt an
uncertainty-aware strategy to filter pseudo labels for further
retraining. Specifically, only the edge pixels that appears in
pseudo labels of every self-training round that can be treated as
true edge pixels (set to 1), while other edge pixels are uncertain
ones [set to a value which is smaller than η in (2)] that
will be ignored during the loss calculation when retraining.
Examples are presented in Fig. 4. The filtered pseudo labels
are also generated without any human annotations, which can
better play as extra and free datasets to be trained by any
learning-based edge detectors from the scratch.

Fig. 4. Two examples from COCO val2017 dataset of the uncertainty-aware
pseudo label filtering process. Zoom-in is recommended for better observation.
Edge pixels of low responses are uncertain pixels to be ignored when
retraining with filtered pseudo labels.

IV. EXPERIMENTS

A. Datasets

Datasets adopted in our experiments include COCO [49],
BSDS [4], Multicue [18], and BIPED [15]. COCO is a widely
used computer vision dataset containing common objects for
natural scenes, in this article, we adopt COCO val2017 of
5000 images as unlabeled dataset for the self-training. BSDS
is designed for image segmentation and boundary detection,
consisting of 200, 100, and 200 images for training, vali-
dation, and testing, respectively. Each image is labeled by
multiple annotators and the final ground truth is calculated
by taking their average. As previous works, we augment the
training and validation sets with flipping (2×), scaling (3×),
and rotation (16×) during the training. It also plays as the
training set of several state-of-the-art networks to compare
the generalization ability. Multicue is a commonly-used bench-
mark dataset for edge detection, containing 100 images from
challenging natural scenes. Each scene contains a sequence
of images from the left and right views, captured by a stereo
camera. Only the last frames of every left-view sequences are
labeled by annotators. For these 100 images, each of them
is annotated by several people as well. As previous works,
we randomly split them into training and evaluation sets,
consisting of 80 and 20 images, respectively. BIPED dataset
contains 250 annotated images of outdoor scenes, splitting into
a training set of 200 images and a testing set of 50 images.
All images are carefully annotated at single-pixel width. The
resolution of Multicue and BIPED are both 1280 × 720. Thus,
we augment each image by flipping (2×), cropping (3×), and
rotation (16×), leading to a training set that is 96 times larger
than the original dataset. We conduct ablation study and the
evaluation of cross-dataset generality on BIPED dataset. The
performances after finetuning on BSDS, Multicue, and BIPED
are also compared with the state-of-the-art edge detectors.
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TABLE I
ABLATION STUDIES OF SEVERAL CRITICAL MODULES ON BIPED

DATASET

B. Implementation Details and Evaluation Metrics

The proposed self-training framework is implemented in
PyTorch [50], and can be applied to any edge detection
network with light refinements. The filtered pseudo labels
can also be trained with any edge detectors from the scratch.
Following previous works, the parameter λ to balance positive
and negative samples and the threshold η in Lwce is set to
1.1 and 0.3 in all cases, respectively. In the final loss function
L = Lwce + µLmlc, the selection of the trade-off weight
µ do not bring much difference and we just set it to 1,
and the termination value T % in Algorithm 1 is set to 2%
(generally 6–8 iterations). No data augmentation strategies are
adopted when self-training with pseudo labels. All Experi-
ments are conducted on an NVIDIA GeForce RTX 3080 Ti
GPU with 12 GB memory.

In this article, two current lightweight edge detectors
DexiNed [15] and PiDiNet [16] are adopted to show the
effectiveness of our STEdge. Both networks are trained with
the Adam optimizer [51]. For the backbone of DexiNed, the
learning rate is 0.0001 with the batch size of 8. For the
backbone of PiDiNet, we train the network with the batch
size of 24, decaying in a multistep way at an initial learning
rate of 0.005.

For evaluations, like previous works, standard nonmaximum
suppression (NMS) will be applied to thin detected edges
before evaluation. We adopt three commonly used evalua-
tion metrics for edge detection, the F-measure of ODS, the
F-measure of OIS, and average precision (AP). ODS and
OIS are two strategies to transform the output probability
map into a binary edge map. ODS employs a fixed threshold
for all images in the dataset while OIS chooses an optimal
threshold for each image. The F-measure is defined as F =

(2 · P · R)/(P + R), where P denotes precision and R denotes
recall. AP represents the area under the precision–recall curve.
However, in some cases when the precision–recall curve is
shorter and does not cover the whole range, it gives a lower
AP even if the predictions are better and satisfactory. In such
cases, AP may be less reliable for evaluations compared with
ODS and OIS. For ODS and OIS, the maximum allowed
distances between corresponding pixels from predicted edges
and ground truths are set to 0.0075 for all experiments.

C. Ablation Study

We evaluate the effectiveness of each part of our STEdge
pipeline by conducting several ablations.

Fig. 5. Edge maps from Canny detectors with different thresholds and three
different settings of our STEdge on the unseen BIPED dataset. STEdge are
trained without any human annotations.

Fig. 6. Example from COCO val2017 of different rounds self-trained on
COCO val2017 with and without consistency. Initializing from the same
phase-one model, the edge maps trained with consistency learning are
qualitatively much more reasonable.

In terms of the DexiNed backbone, Table I presents the
quantitative comparisons of Canny detectors with different
thresholds, the phase-one model, only last-layer teaching, mul-
tilayer teaching with and without consistency regularization
and the final model retrained with filtered uncertainty-aware
pseudo labels. Qualitative comparisons are in Fig. 5.

As expected, it is difficult to set proper thresholds for
Canny detectors to fit all images, which leads to low F-
scores. However, from the noisy Canny pseudo labels, the
networks successfully learn general features for edge detec-
tion. The phase-one model training from Canny labels already
outperforms Canny detectors. Also, we can observe that
the performance drops significantly if only the last layer is
supervised, which reveals the necessity of multilayer teaching.
Meanwhile, there will be much more redundant edge pixels
without regularization by consistency loss. As shown in Fig. 6,
the consistency loss works as a regularizer to stop the network
from labeling weak noisy edges that violate the consistencies.

Through multilayer teaching and consistency, the networks
continue to get performance boosting. Additionally, we also
demonstrate that if we introduce uncertainty to further filter
pseudo labels and retraining with them, the network per-
formance will continue to improve. Note that the whole
self-training process employ only unlabeled data.

Fig. 3 illustrates some examples from the COCO-val2017
dataset. The initial pseudo label is sparse and noisy from
Canny detector with high thresholds. As iterative training
proceeds, the predicted edge maps and pseudo labels are
evolving together, gradually getting better.

We also evaluate the influences of different Canny pseudo
labels used in the phase-one model, quantitative results and the
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TABLE II
QUANTITATIVE EVALUATION OF SELF-TRAINING WITH UNLABELED

COCO-val2017 DATASET AND INITIALIZING WITH CANNY OF VARI-
OUS THRESHOLDS

Fig. 7. Final performance self-trained from phase-one models with different
Canny thresholds. Except for some extreme cases, curves of moderate initial-
ization have similar performances.

Fig. 8. Examples of Canny detectors with various thresholds on COCO–
val2017 dataset.

precision–recall curves are shown in Table II and Fig. 7. When
the number of edges on initial edge maps is moderate, initial-
izing from different Canny pseudo labels does not make a big
difference to the final model. However, the final performance
drops if the edge pixels on initial edge maps are too sparse
(300–400) or too dense (20–40). The sensitivity to the quality
of initial pseudo labels is one of the limitations of our method
and could be tackled by introducing extra constraints. Some
visual examples are provided in Fig. 8. Since the qualitative
performance shows setting thresholds as (200, 300) is slightly
better, we use this setting as initialization throughout this
article.

D. Comparisons of Generalization

In this section, we study the generalization ability
of the proposed approach. We compare our network
with several state-of-the-art networks including HED [12],
RCF [13], BDCN [14], DexiNed [15], and PiDiNet [16]. For

Fig. 9. Precision–recall curves of state-of-the-art methods trained on BSDS
and evaluated on BIPED.

TABLE III
COMPARISONS BETWEEN STATE-OF-THE-ART METHODS EVALUATED ON

BIPED. “-ST” MEANS ADOPTING OUR SELF-TRAINING STRATEGY
BASED ON AN EDGE DETECTION BACKBONE, AND “-ST+” MEANS

APPLYING FURTHER UNCERTAINTY-AWARE RETRAINING
ON COCO-val2017 (5 K IMAGES) AS DESCRIBED IN

SECTION III-E. ULE [43] IS SELF-TRAINED ON
(VSB) [53] AND YTB [54] DATASETS (∼50

K FRAMES). * DENOTES TRAINING WITH
PSEUDO LABELS WITHOUT HUMAN

ANNOTATIONS, AND SAME FOR OTHER
TABLES

generalization, we train all these backbones on BSDS, and
evaluate them on BIPED. All other methods are trained
supervisedly with labeled edge maps while our network is
self-trained without using any human annotations. Note that
our networks do not initialized from any pretrained models
while others are pretrained with ImageNet [28].

Moreover, we also compare the performance with the most
similar self-training edge detection framework ULE (Unsu-
pervised Learning of Edges) [43]. ULE starts with Sobel
edges [24] and adopts EpicFlow [52] for optical flow esti-
mation. The motion edges are detected on colored flow maps
and then applied to train the new edge detector, which will
further detect edges for the next iteration. Since optical flow
estimation needs consecutive frames, ULE combines videos
from two different datasets: the Video Segmentation Bench-
mark (VSB) [53] and the YouTube Object dataset (YTB) [54],
leading to ∼50 K frames after frame filtering.

The Precision-Recall curves are presented in Fig. 9.
By observing the quantitative results in Table III and
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Fig. 10. Qualitative comparisons on BIPED dataset. ULE [43] is self-trained on VSB and YTB dataset (∼50 K frames) and “DexiNed-ST” means self-trained
on COCO val2017 dataset (5 K images) without any human annotations using the DexiNed backbone. Other networks are trained on labeled BSDS dataset.

TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART WORKS ON Multicue

DATASET. 50% MEANS FINETUNING USING HALF OF THE TRAINING
SET

qualitative results in Fig. 10, several interesting conclusions
can be drawn.

1) Edge detectors with our self-training strategy outperform
other methods significantly with more precise details,
including those supervised on BSDS and self-trained on
larger datasets: In Tables IV and V, previous works are
capable of performing well when training and evaluating
on the same datasets. However, from Table III we can
see that their generalization ability is limited when
evaluating on unseen datasets, showing that the gener-
alization ability of edge detection networks remains an
open problem, which is important in practical applica-
tions. ULE can detect most motion edges well; however,
there also exist other types of semantic edges in natural
images, which limits its performance.

2) Training on the pseudo labels generated by our
self-training method can bring free performance boost
to edge detectors: Compared with the original version,
the DexiNed self-trained on unlabeled BSDS dataset
can already achieve comparable performance on unseen
BIPED dataset. The performance further boosts signifi-
cantly for both the backbones of DexiNed and PiDiNet
when self-trained on the COCO val dataset, whether the
network is pretrained (on BSDS) or not, revealing the
potential of exploring more unlabeled datasets.

TABLE V
COMPARISON WITH THE STATE-OF-THE-ART WORKS ON BIPED DATASET.

50% MEANS FINETUNING USING HALF OF THE TRAINING SET, AND
SAME FOR OTHER TABLES

E. Comparisons With the State-of-the-Arts

1) Performance on BSDS: We compare our model with
traditional detectors including SCG [55], PMI [56], and
OEF [57], and deep-learning-based detectors including Deep-
Contour [26], HED [12], RCF [13], BDCN [14], Dex-
iNed [15], and PiDiNet [16]. The best results of all the
methods are taken from their publications. Some qualitative
results are illustrated in Fig. 11. With the aid of STEdge,
edge detectors can predict more detailed edges accurately.
Quantitative results are reported in Table VI. As lightweight
edge detectors compared with VGG-architecture-based net-
works [12], [13], [14], DexiNed and PiDiNet with our
self-training method still achieve comparable performance
with much faster inference time. Also, both of them can
benefits from pre-training on COCO val dataset for free
performance boost, for DexiNed, it attains 1.4% improvement
for ODS and 1.4% for OIS, and 0.7% for ODS and 0.9% for
OIS in terms of PiDiNet.

2) Performance on Multicue: For a fair comparison, we fol-
low the experiments of previous works [13], [14], finetuning
our self-trained model on the split 80% training set and
test on the remaining 20%. We average the scores of three
independent trials as the final results. Some Qualitative exam-
ples are presented in Fig. 12. After self-training on COCO
val2017, even finetuned on 50% of the training set, the
edge detectors can achieve almost the same performances
compared with those finetuned on the whole training set,
showing the potential of our self-training method for few-
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Fig. 11. Qualitative detection examples from BSDS dataset before NMS of two backbones combined with our STEdge.“-ST+” means applying our whole
self-training pipeline with edge detection detectors, and same for other figures. With the aid of STEdge, more detailed edges are predicted precisely compared
with the original ones.

Fig. 12. Qualitative detection results before NMS of two backbones combined with our STEdge. The first three rows are examples from BIPED dataset and
the last three rows come from Multicue dataset. “(50%)” means training using half of the training set. With the aid of our STEdge, edge detectors finetuned
only on half of the training set already achieve the state-of-the-art performances.

shot edge detection. The comparisons to recent state-of-the-art
methods are reported in Table IV, where our STEdge with
DexiNed backbone achieves the best performance. Moreover,
we can observe that, for both DexiNed and PiDiNet with

STEdge, even finetuned on 50% of the training set, their
performance already outperform most of previous methods
and their original performance without self-training on COCO
val. Especially, if trained with the same 100% training set,
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TABLE VI
QUANTITATIVE RESULTS OF SEVERAL RECENT STATE-OF-THE-ART

WORKS ON BSDS DATASET

with the aid of our self-training strategy, DexiNed attains 2.3%
improvement for ODS and 1.9% for OIS, and PiDiNet attains
2.6% improvement for ODS and 2.7% for OIS.

3) Performance on BIPED: BIPED is a recent dataset with
well-annotated edge maps. We also finetune the self-trained
models on 50% and 100% of the training split, which cor-
respond to 100 and 200 images, respectively. As shown in
Table V, DexiNed and PiDiNet with STEdge method also
already achieve the best performance. With more labeled
images (100%) for training, the performance gets substantially
higher. By self-training on COCO val dataset freely, DexiNed
attains 0.7% improvement for ODS and 1.6% for OIS, PiDiNet
attains 1% improvement for ODS and 0.7% for OIS.

The experiments demonstrate the superiority of the pro-
posed self-training scheme and multilayer consistency regu-
larization. By exploring unlabeled datasets, the generalization
ability and performance are both improved significantly.

V. CONCLUSION AND LIMITATIONS

We propose a simple but effective self-training framework
for edge detection named STEdge, to leverage unlabeled
image datasets. To the best of our knowledge, it is among
the first self-training pipeline proposed for edge detection.
The framework consists of multilayer teaching by noisy
pseudo labels and consistency regularization to suppress
complicated textures. During iterative training, network
predictions and the noisy pseudo labels are evolving
simultaneously. Experimental results show the superiority
of the proposed STEdge on generalization ability and edge
detection performance on several benchmark datasets. In the
future, we plan to explore the full pipeline of utilizing
unlabeled web images for self-training edge detection and
further improve the cross-dataset generality.

Limitations: The performance drops when the initial edge
maps are too sparse or too dense, the initialization strategy
with designed constraints could be one of the future direction.
Although applying STEdge to edge detectors can achieve
better performances, the utilization of unlabeled data is still
unsatisfactory. Some pseudo labels still contain noisy pixels
surrounding image areas of complicated textures, degenerating
the self-training performance. A well-designed pseudo label
sampling strategy during re-training is also an interesting
direction to explore.
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